In lieu of an abstract, here is a brief excerpt of the content:

| 23 Covering Nukes: Play Hard, but Play Fair Written by Tom Henry The nuclear age is more than 50 years old. Yes. Fifty. While the idea of splitting atoms and generating electricity by a chain reaction called nuclear fission is more than a half-century old now, the debate remains hotter than ever. Are nuclear plants safe, especially as they get older? Can their biggest byproduct —spent reactor fuel, the only material in civilian hands classified as high-level radioactive waste—be managed properly? Will the anticipated new breed of reactors be that much better? And, even if they are, will they be too costly to build? These aren’t easy questions to answer, whether you’re probing vulnerability to terrorist attacks or mundane wear-and-tear issues, such as the corrosion rate of a certain type of metal alloy, Alloy 600. The latter can be found in most of today’s nuclear plants and is not as rust-resistant as once thought. So how do you really comb through the rhetoric and get past the raw emotion? Get to know the issues. School yourself. Learn whom to trust. Stay neutral and hold people accountable. Remain humble and hungry enough to learn more. Maintain an insatiable curiosity. Decipher jargon and write with eloquence. Separate science from politics while recognizing that both exist. Write with flair and passion. Don’t get flippant. Think globally and write locally. Tell people why it matters. And wish for luck. That’s right—luck. Keep looking for that whistleblower or anonymous, inside source who will walk you through the bureaucratic maze you’ve entered. The stronger your credibility, the better your chances are of landing a key ally. But the reality is you will need to have some doors opened for you. Try as hard as you will, you will still need a certain amount of luck. But your odds of making that key contact or being directed to that trea- 24 | The Reporter’s Handbook: Getting Started sure of information in a seemingly arcane and technical document will improve greatly with a good mix of determination and credibility. A Little Background There are 104 nuclear power plants collectively generating 20% of America’s electricity today. They have one of two types of reactors. About two thirds are pressurized water reactors, known as PWRs for short. The other third are boiling water reactors, known as—you got it—BWRs. The fundamental difference is that PWRs operate at higher pressure and higher temperature than BWRs. PWRs are akin to old pressure cookers found in your mother’s kitchen. They’re more efficient and powerful, but can be a tougher tiger to tame. The general concept of nuclear reactors is that they generate steam—i.e., power—to spin turbines that create electricity. PWRs and BWRs go about it slightly differently. With PWRs, the steam is generated by coolant water that has passed through reactors operating as high as 605 degrees. Both types of reactors harness the intense heat created inside the reactor during the fission process, in the form of steam that can spin turbines to generate electricity. The idea of doing that for peaceful, civilian uses dates to a famous speech former President Dwight D. Eisenhower delivered to the United Nations General Assembly in New York City on December 8, 1953. Called “Atoms for Peace,” it is widely regarded as the dawn of the nuclear age. Today’s power stations, of course, didn’t get built right away. They took years of planning, arriving after an era of experimental test reactors. And, when you get down to the engineering specifics—and go beyond the two basic types of reactors—there’s actually a hodgepodge of 104 different designs across the landscape. Uniqueness makes baseball stadiums interesting. But it also makes nuclear plants confusing not only to the layman but to skilled engineers, too. The Nuclear Regulatory Commission—the government agency that oversees the nuclear industry—is now in the process of determining which of America’s 104 existing plants are in good enough shape to have their licenses extended by 20 years. Possibly even another 40. Such evaluations will continue for years. That same federal agency has been promoting streamlined “cookiecutter ” designs to make parts—and training—at future nuclear plants more interchangeable. In the fall of 2007, the U.S. Nuclear Regulatory Commission got its first application for a new nuclear plant since the 1970s—a proposed twin-reactor expansion of the South Texas...

Share