In lieu of an abstract, here is a brief excerpt of the content:

as a function of population growth, economic growth, and changes in economic activities. Currently, most of the wastewater generated in the West Bank flows untreated over the aquifer recharge areas. Some initial steps have been undertaken to build new wastewater collection and treatment plants on the West Bank with external funding. However, much of the West Bank is not yet connected to sewer systems, and almost none of the wastewater is treated to a secondary level. Even with external funding, it is likely that it will take considerable time before these problems are addressed. Moreover, the success of wastewater treatment is a function of the level of maintenance. Therefore, the mere construction of treatment plants does not assure that the wastewater will indeed be treated properly. The wastewater treatment and reuse problem becomes even more difficult when the wastewater crosses boundaries. This issue has been tested in the Tulkarem region. In the Zomar/Alexander watershed, a local-level agreement between the municipality and the bordering Israeli regional council was reached. Thanks to intervention and funding from the German government, primary treatment was established in Tul Karem, and effluent levels were upgraded when the discharges reached the Yad Hana plant inside Israel. As a result, the Alexander River conditions have also improved. In a study of the options for managing the sewage of the Jerusalem region, Eran Feitelson and Qasem Abdul-Jaber show that separate management is the most costly and least effective option, and they suggest that third-party involvement by privatization should be explored. If the levels of distrust preclude any cooperation, then it is quite obvious that pollution from raw sewage is likely to remain an unresolved problem. Water supply to the Palestinians in the West Bank will continue to be a problematic issue if the systems are totally separated, especially in drought situations. Given the lack of storage capacity in the Palestinian territories and the absence of conveyance systems in a north-south direction, except for the Israeli national water carrier, the Palestinians will find it difficult to balance the temporal and spatial variations in supply and demand. Hence, the Palestinians will face significant difficulties in assuring reliable water supply without Israeli assistance in conveyance and augmentation. Thus, even if Palestinians increase their extractions from the aquifers, the population, especially in the cities along the national water divide, may still suffer supply problems, especially in summer and drought years. Assessing the Effects of Separate Management If, indeed, the Mountain Aquifer is to be managed separately, none of the issues noted in the previous section will likely be addressed, especially if any attempt to address them will be perceived as providing the other side with a free rider option. Moreover, even if attempts are made to address some of these issues by one of the parties, the costs associated with such solutions will be considerably higher than in any cooperative mode. Cooperation between the two parties has two potential benefits. First, any cooperative agreement will impose external obligations on the two parties that Joint Aquifer Management 317 may induce them to undertake actions that they may not do otherwise. For example, if the water-for-wastewater exchange idea is adopted (Feitelson 2001), Israel will be required to augment Palestinian supplies, particularly in drought situations (Fischhendler 2003). At the same time Palestinians will be obliged to treat their wastewater to a pre-specified level (probably advanced secondary). Secondly, cooperation may facilitate greater cost-effectiveness. It will allow for exploitation of economies of scale, better use of resources, and more effective data generation and use. From a long-term perspective, it is obvious that separation is an inferior option. This is particularly true, subsequent to the introduction of large-scale desalination in Israel, and will continue to be so—for as long as desalination will remain more costly than pumpage from the aquifer. As long as this condition holds true, the deterioration of the aquifer and the subsequent rise in the cost of supplying clean potable water from it will continue to imply an increase in the overall cost of water supply. Over time the deleterious effects of separation are likely to become increasingly apparent. However, groundwater issues are generally less perceptible than other issues (including surface water issues), and the ability to rectify the damage to groundwater is limited and costly (Gvirtzman 2002). Thus, it is likely that by the time the damage is apparent enough to trigger action, it may be...

Share