In lieu of an abstract, here is a brief excerpt of the content:

3 3 A N E W V I E W O F N ATU R E Parts and Wholes in Biological Realit y We are Nature, long have we been absent, but now we will return. — W A LT W H ITM A N Imagine that a computer game like the Godgame described in the first chapter is available for home use. Assume that the players of this game can view interactions between human and environmental systems from the same godlike perspective in outer space and can zoom in and out at will to observe these interactions from the global to local levels. If a user zooms in on urban environments, human systems appear as extensive networks of highways and tracks that resemble the circulation system of some giant organism. Products from distant factories, farms, and coastal ports are flowing through the arteries of this system to energy-hungry urban centers , and raw materials are flowing to processing and manufacturing plants. The weblike connections between electric power plants, transformers, cables, power lines, phones, radios, televisions, and computers resemble the spine and branches of a central nervous system, and the centers of production, distribution, and exchange can be likened to tissues and organs . If a player zooms out and traces the threadlike connections between these systems over the horizon and around the planet, this might conjure up the image of a superorganism that is growing at an alarming rate. Obviously, the players will not assume that this global technological system is a superorganism in any literal sense. On the other hand, they cannot fail to notice that this system consumes vast amounts of natural resources, massively damages and disrupts environmental systems from the tropics to the poles, and does resemble, in ecological terms at least, a superorganism that feeds off the living system of the planet and extends its bodily organization into every ecological niche. The more astute players will also realize that if this system continues to grow at the present rate, using existing technologies and energy resources, such growth can easily undermine the capacity of the system of life to sustain human life. If we must begin very soon to coordinate large-scale human activities in ways that will allow for the emergence of sustainable conditions in the global environment, this will obviously require some understanding of how the interactions between human and environmental systems are viewed in environmental science. Fortunately, acquiring a working knowledge of this real-world view is not very difficult. The real challenge is to use this knowledge to posit viable solutions to the environmental crisis. One of the major reasons why we have failed to resolve this crisis is that scientifically outmoded assumptions about part-whole relationships in Newtonian or classical physics massively condition our understanding of the causes of environmental problems and the manner in which they can be resolved. These scientifically outmoded assumptions emerged during the first scientific revolution of the seventeenth century and can be briefly summarized as follows: (1) the fundamental unit in physical reality is a discrete and separate part (mass point or atom); (2) the interactions between these parts are completely determined by universal physical laws; (3) these interactions result in wholes (physical systems or processes) that can be reduced to and explained in terms of the sum of their constituent parts; (4) the nature and function of a whole can be understood in terms of the interactions “between” constituent parts; and (5) the future of any physical system or process can eventually be known and described in exhaustive detail by physical theories if all the initial conditions are known. All the assumptions about part-whole relationships in Newtonian or classical physics were undermined during the second scientific revolution in the twentieth century beginning with the publication of Einstein’s special theory of relativity in 1905. Classical or Newtonian physics is now viewed as a higher-level approximation of physical processes that is useful in situations where the speed of light and the quantum of action can be conveniently ignored for practical purposes. But for most of the twentieth century, many physicists assumed, wrongly as it turned out, that quantum physics was the most complete description of physical reality on the microlevel and that classical physics was the most complete description on the macrolevel. For our purposes, this seemingly esoteric issue is important because most teachers of introductory biology courses still presume that this two-domain distinction is scientific. This explains why most introductory textbooks in biology make...

Share