In lieu of an abstract, here is a brief excerpt of the content:

Chapter 4 Life’s Fundamental Feature: Devolution So at the base of ancient philosophy lies necessarily this postulate: that there is more in the motionless than in the moving, and that we pass from immutability to becoming by way of diminution or attenuation. —Henri Bergson, Creative Evolution If evolution includes any veritable becomings, it is in the domain of symbiosis that bring into play beings of totally different scales and kingdoms, with no possible filiation. —Gilles Deleuze and Felix Guattari, A Thousand Plateaus It [the cell] is far too complex to have arisen full-fledged as such. Further, the doings of this little individual life must somewhere and at some time have acquired the property of cohering in co-operative organization. Lesser lives thus have co-operated to make larger cooperative lives. Man is one of the latest of these latter. —Charles Sherrington, Man on his Nature The time has come to turn the tables on impossibilities. Chapter 4 shows how some of our fundamental biological features make immortality a doable goal. Chapters 2 and 3 have only shown that immortality would not emerge in human beings left to the normal courses of evolution and development. But development and evolution are only two of life’s key characteristics. Life has other characteristics, some of which would aid immortality and some would even abet it. 126 LIFE’S FUNDAMENTAL FEATURE: DEVOLUTION Life’s key characteristics are those without which life, as we know it, would not exist. These are characteristics, such as autopoiesis and homeostasis , with self-evident adaptive value.1 My object here is not to make a list of such characteristics, but to identify those most relevant to immortality and analyze them for their potential and problems in achieving immortality for human beings. In order to meet this objective, I have gone back to basics—to where it all began and to life’s most fundamental features. Life was different at its outset from what it is now, but life in extant species exhibits two fundamental features when stripped of modern appurtenances : fusion, or mixing, and fission, or fragmentation. I call the combination of fusion and fission devolution and devote Chapter 4 to tracing its history through life: its relevance to life’s key characteristics in viruses and transposons, in prokaryotes and Eucarya, in sex and multicellular animals, in life histories and death. The chapter then concludes with a summary of the lessons of devolution for immortality. GETTING DOWN TO BASICS: LIFE BEGINS What was life like between 3.8 billion years ago, when it first appeared, and 0.54 billion years ago at the beginning of the Cambrian Period when animals with skeletons first left a substantial fossil record? In all likelihood, these steeled animals contended for their place in posterity and died much as we do. But what was life like earlier, before it was welded to sexual reproduction ? Stretching the fossil record back to 2 billion years ago, by including the microfossils of bacteria, leaves 1.8 billion years, or nearly half the duration of life on Earth, during which time much, if not all, of life changed without benefit of Darwinian evolution. What sort of life prospered in this epoch, and did devolution play a role in changing it? One cannot expect to examine primordial life today, but one may garner a glimpse of what it might have been like by taking a page out of physics and performing a “thought experiment.” What characteristics of life would one encounter standing on a wave front as it moved through life’s dimensions? What would life look like in one, two, and three dimensions rather than the familiar four—length, breadth, depth, and duration—physiological and evolutionary time? How did life change when a point in biological life was stretched into a line? How did life change when a line was deflected into a circle or stretched into a biological plane—a primitive biofilm? How did life change when a plane was folded or pumped into a three dimensional compartment—a [18.225.255.134] Project MUSE (2024-04-18 23:26 GMT) Stanley Shostak 127 microsphere? What additional biological changes took place when life added duration and introduced sexual reproduction and generational change? LIFE IN ONE AND TWO DIMENSIONS Biology’s literature provides sparse food for thought for imagining life in one and two dimensions, but the larder is not entirely bare. For example, Walter Gilbert has speculated on life in an RNA...

Share