In lieu of an abstract, here is a brief excerpt of the content:

1 Introduction This volume is based on three lectures I delivered at the University of California as the 2005 Clark Kerr Lecturer on the Role of Higher Education in Society. This lectureship and the encouragement and support of the members and staff of the Center for Studies in Higher Education at the University of California, Berkeley, provided an extraordinary opportunity for me to organize and present some personal observations and opinions about American higher education garnered during forty-five years as a student, professor, and administrator in both public and private research universities. I am particularly pleased that this work is presented in honor of Clark Kerr. There is no one whose legacy in higher education , or in our understanding of higher education in the twentieth century, exceeds that of Clark Kerr. Kerr was a doer and builder, not just an observer and theoretician. He was the principal architect of the 1960 California Master Plan for Higher Education. This framework still governs the state’s three systems of higher education (the University of California, the California State Universities, and the Community Colleges); determines which students are eligible for each of these systems; and guarantees access for those who are qualified. Kerr’s shadow looms large over the American educational landscape. His understanding of the emergence of the multiversity —as he famously termed it in his 1963 Godkin Lectures at Harvard—crystallized our view of the tectonic changes that occurred in U.S. research universities at the middle of the twentieth century. Perspectives and experiences change with time and over generations. In 1963 Kerr described the rapid transformation of our research universities into something new and different. Campuses sprawled intellectually even as they sprawled physically across the landscape of state after state. As our universities evolved, they developed a complex web of purposes, which created increasing tensions between the goals of societal utility and academic purity. In the same year that Kerr articulated this insight, and much more, in the Godkin Lectures, I graduated from West Virginia University and immediately headed to Ann Arbor to begin my graduate studies in mechanical engineering at the University of Michigan. What to Kerr, as a leader of his generation, was a surprising new incarnation of the American research university was for me a given. Michigan, MIT, Berkeley, Caltech, and Stanford were magnetic attractors to a young engineering student who was truly a child of the Sputnik era. My strong attraction to these schools largely resulted from what has been termed the engineering science revolution. This revolution was spawned primarily by faculty at MIT, who, 2 / Introduction [18.191.46.36] Project MUSE (2024-04-19 02:32 GMT) Introduction / 3 building on their experiences in the MIT Radiation Laboratory during World War II, created a radically different way to practice and teach engineering. The “Rad Lab” had brought together a remarkable group of scientists and engineers to rapidly develop battle-ready radar systems using concepts and elements invented by the British. Many believe that radar was at least as instrumental in the Allied victory as were the bombs developed at the better-known laboratory at Los Alamos. Another towering legacy of the Rad Lab work was a new world of engineering education, built more on a solid foundation of science than on traditional macroscopic phenomenology, charts, handbooks, and codes. The new engineering science, which relied on intense research and required an entirely new panoply of textbooks and laboratories, drove change in a broad range of fields, among them the space program, defense, transportation, telecommunications, computing, and medicine. Its assimilation into curricula was accelerated by the 1955 report of the American Society for Engineering Education’s Committee on Evaluation of Engineering Curricula.1 MIT, under engineering dean Gordon Brown, and Stanford, under provost Frederic Terman, were the first to adopt this new approach to engineering education, and Berkeley, Wisconsin, Michigan, Illinois, and other institutions soon followed and became strong contributors to it. This corner of the emerging multiversity was very attractive and exciting. What a joy it was to pursue my engineering education in this heady environment, and also to have friends who were students of medicine, law, history , chemistry, mathematics, social work, education, and philosophy . How remarkable it was to be on a campus with endless opportunities to attend world-class musical events, to visit the 4 / Introduction art museum, and to attend lectures by the most influential scholars or practitioners from every discipline imaginable. In short, as a student I learned...

Share