
		
 	

 [Skip to Content]
		
		
		
			
				
					
						
							[image: institution icon]

							Institutional Login

						

					

					
						
							[image: account icon]

							LOG IN

						

						
 						
 						[image: accessibility icon]
 						Accessibility
 				
						

					

				

			

			
			
			
			
				
					
						
							[image: Project MUSE]
							[image: Project MUSE]							
						

					

									
						
							
								Browse
							

							
								
									OR
								

							

							
								
 								
 								
										
 Search:
										
										
										
										
																				

										

									

								
																											
								

							

						
				
					

				
					
						
	
		
			
			 menu
				
			

		

		
			Advanced Search
			Browse
			
				MyMUSE Account
				
					Log In / Sign Up
					Change My Account
					User Settings
					Access via Institution
					MyMUSE Library
					Search History
					View History
					Purchase History
					MyMUSE Alerts
					Individual Subscriptions
																
				

			
									
			
				Contact Support
			

		

	

		

					

				

			

			
			
			
		

	
		
	

 		
			
	
				
					
						Algorithmic Composition: A Guide to Composing Music with Nyquist

					

				

				
				
					
						
							
								
								
								
								
							
							
					
							
					
					
							
								
								

							
							

						

					

				

				
		

			
	
		

 	
 		
 		
 		
 		

 		
 		
 			
 			
 			
 			
				
						
						
						
						[image: restricted access] Chapter 10. Functional Programming
						
						

						
	
						
						
						

						 Roger B Dannenberg
						 ,
						
						

						 Mary Simoni
						
												
						
	
							University of Michigan Press
							
	Chapter
	
						
 						 	
 							 View Citation
							
	
 							
 							 [image: Related Content]
 Related Content
 							
 							

							

						
	
							Additional Information
						

				

 		
 		

 		
 		
		
		
 		
 		
			

			
			
			 In lieu of an abstract, here is a brief excerpt of the content:
			 125 Chapter 10 Functional Programming Functional programming is a programming style that emphasizes the combination of functions to produce values as opposed to the sequential evaluation of commands and the modification of variables. One advantage of functional programming is that functional programs are often easier to reason about than non-functional alternatives. This chapter introduces some functional programming concepts and illustrates their use in computing scores. 10.1 Introduction to Functional Programming Lisp was one of the first languages to support functional programming , and by encouraging functional programming, Lisp has had a tremendous impact on many modern languages such as Java, Python, and ML. The main attraction of functional programming is that behaviors of functional expressions do not depend upon the changeable and hidden values of variables or the sequential order of assignment statements. Often, functional programs enjoy the good qualities of mathematical equations, which are designed for communication and expressiveness. Proponents of other styles of programming, particularly ObjectOriented Programming, argue that variables and assignment statements are actually features that allow programs to more naturally model real-world objects that do in fact change over time. In our experience , functional programming, object-oriented programming, and other programming paradigms all have advantages and disadvantages . The best approach often depends on the problem at hand. SAL is a bit of a compromise. It is built above a Lisp implementation and therefore has access to the functional programming features of Lisp. However, SAL has a much greater emphasis on sequential execution and assignment to variables, so it does not strongly encourage functional programming. The occasional need to access special Lisp forms such as progn and setf could be seen as a weakness of SAL. 10.2 Mapping a Function over a List One powerful concept of functional programming is the use of functions as parameters. In other words, we can have functions of functions , also called higher-order functions. The primitive mapcar al- 126 Chapter 10 ⋅ Functional Programming lows you to apply a function to each element of a list. The applied function may be another primitive or a user-defined function. mapcar is thus a higher-order function. In SAL, when you pass a function to a function, the passed function is normally a quoted symbol. The template for mapcar is mapcar(quote(function), list) Recall that the primitive sqrt returns the square root of its input. Example 10.2.1: sqrt function SAL> print sqrt(25.0) 5 Since mapcar allows you to map a function onto a list, we can take the square root of each element of a list by passing sqrt to mapcar. Example 10.2.2: mapcar and sqrt SAL> print mapcar(quote(sqrt), {25.0 36.0 81.0}) {5 6 9} Notice the syntax of mapcar. The function passed to mapcar must be quoted. The inputs to the passed function are given as a list. Recall in Example 8.2.2, we wrote a user-defined function that used #? to determine if a MIDI note is within the range of the MIDI specification. Example 10.2.3: test-range (as presented in Chapter 8) define function test-range(pitch) begin return #?(pitch 127, quote(too-high), quote(in-range))) end Using mapcar, we can determine if an entire list of MIDI notes is in range. Example 10.2.4: mapcar and test-range SAL> print mapcar(quote(test-range), {0 -5 129 127 54}) {IN-RANGE TOO-LOW TOO-HIGH IN-RANGE IN-RANGE} [3.215.186.75] Project MUSE (2024-04-10 20:46 GMT) 10.2 Mapping a Function over a List 127 Since returning a list that describes the range status of a list of MIDI notes may not be helpful in composing music, we alter our function in Example 10.2.4. Any MIDI note outside the range of the MIDI specification is recalculated to fall in range. The new function, called rangify, is defined in Example 10.2.5. Example 10.2.5: rangify define function rangify(note) begin return #?(note 127, 127, note)) end The function rangify uses an algorithm that returns 0 for all MIDI notes less than 0 and 127 for all MIDI notes greater than 127. rangify is one of many algorithms that may be used to correct for values that fall outside of the range of the MIDI specification. In Example 10.2.6, we map the function rangify onto a list of values . Notice all values less than 0 return 0 and all values...

			

			

			
			
			
			
			
			

			
			
			
						
			
				
					collapse
				
				
					
					You are not currently authenticated.
									
					If you would like to authenticate using a different subscribed institution or have your own login and password to Project MUSE

					Authenticate
				

			

			
			
			
 	

 	
 	

	
		

		

		
		

		

		

	 Share

 		
 		

		

		

		
			
			
		

	

 	
 	
 	
 	
 	

 	
	
		
			Additional Information

		

				
			
			
							
			
				
					ISBN
				

				
					9780472029051
				

			

			
			
			
				
					Related ISBN(s)
				

				
					9780472035236, 9780472118687
				

			

			
			
			
			
				
					MARC Record
				

				
					Download
				

			

			

			
			
				
					OCLC
				

				
					829713909
				

			

			
			
			
				
					Pages
				

				
					264
				

			

									
			
			
				
					Launched on MUSE
				

				
					2013-05-20
				

			

			
			
			
			
				
					Language
				

				
					English
				

			

			
			
			
				
					Open Access
				

				
					
					No
					
				

			

			
			
			
			
		

	

	
		
		
		
			Copyright

		

		
			2013

		

		

		

	

		
			
				
					
						Project MUSE Mission

						Project MUSE promotes the creation and dissemination of essential humanities and social science resources through collaboration with libraries, publishers, and scholars worldwide. Forged from a partnership between a university press and a library, Project MUSE is a trusted part of the academic and scholarly community it serves.

					

					
						[image: MUSE logo]
					

				

			

			
			
				
					
						
							
								About

									MUSE Story
	Publishers
	Discovery Partners
	Journal Subscribers
	Book Customers
	Conferences

							
							
								What's on Muse

									Open Access
	Journals
	Books
	The Complete Prose of T. S. Eliot
	MUSE in Focus

							
							

						

						
						
								Resources

									News & Announcements
	Email Sign-Up
	Promotional Materials
	Presentations
	Get Alerts

							
							
								Information For

									Publishers
	Librarians
	Individuals
	Instructors

							
							

						

					

					
						
							
								Contact

									Contact Us
	Help

									
											[image: Facebook]
	[image: Linkedin]
	[image: Twitter]

									

							
							
								Policy & Terms

									Accessibility
	Privacy Policy
	Terms of Use

							
							

						

						
							
								2715 North Charles Street
Baltimore, Maryland, USA 21218

								+1 (410) 516-6989

								muse@jh.edu

								©2024 Project MUSE. Produced by Johns Hopkins University Press in collaboration with The Sheridan Libraries.

							

							
								Now and Always,
The Trusted Content Your Research Requires

								
								
								[image: Project MUSE logo]
								
								[image: Project MUSE logo]

								Now and Always, The Trusted Content Your Research Requires

								Built on the Johns Hopkins University Campus

							

							

						

					

					

				

			

			
				Built on the Johns Hopkins University Campus
		
				©2024 Project MUSE. Produced by Johns Hopkins University Press in collaboration with The Sheridan Libraries.
			
			
		
		

		
		
		
		
		
			Back To Top
		

		
		
		
		
		
		
		
			
				This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.

				
				
				
				
				
				 Accept
				

				

			

		
		
		
		
		
		
		
		
		
		
		
		
		
	