In lieu of an abstract, here is a brief excerpt of the content:

T C Science and engineering (S&E) research contributes significantly to the overall quality of life in a society. For example, research creates new opportunities that lead to economic growth. In the biomedical area, research has done much to extend life expectancy. Research also helps to address humanity’s quest for basic understanding; the mission to Mars in  that discovered the presence of water on that planet is but one recent example of this quest. Three sectors of the economy—industry, academe, and “other” (which includes federal and state government and nonprofit research labs)—conduct S&E research. Science and the University focuses on the academic sector and examines the current status of the science and engineering enterprise in this sector, as well as issues that affect the future course of S&E research in academia. The majority of university research occurs in laboratories that are directed by university faculty members and staffed by graduate students and postdoctoral fellows. Responsibility for funding these laboratories is generally the responsibility of the faculty member. A record of successful funding and publications that derive from the research that the funding permits is often a necessary condition for obtaining promotion and tenure at a research university. Since World War II, the lion’s share of the funding has come from the federal sector, although the amount from the federal government has been subject to fits and starts, both by field and over time (Dickson ). Recently, we have seen this in the doubling of the National Institutes of Health budget at a time when federal funds for research in the physical sciences have waned. Partly in response to the increased expense Introduction Science and the University  .    .   of doing science, and partly in response to the fits and starts of federal funding , the share of research funding provided by universities out of their own internal resources has increased over time. The share provided by industry has also been on the rise, partly in response to the same factors.1 Funding opportunities and politics, at both state and federal levels, have considerable influence on the research foci of universities. Historically, many states directed university research to targeted subjects: Wisconsin focused on dairy products, Iowa on corn, Colorado and other Western states on mining, North Carolina and Kentucky on tobacco, Illinois and Indiana on railroad technologies, and Oklahoma and Texas on oil exploration and refining (Goldin and Katz , ; Rosenberg and Nelson ). Beginning with World War II, defense-related funding altered the focus of university research and led to the expansion of several universities, including the Massachusetts Institute of Technology and the California Institute of Technology. Other universities learned from the experiences of their sister institutions and used postwar defense contracts to propel themselves into the all-star league. Stanford was an early postwar example of this; more recently the Georgia Institute of Technology and Carnegie Mellon have benefited from defense-related research (Leslie , ). The tremendous growth in biomedical research funds has also contributed to the growth of universities with a heavy focus on medical-related research, such as the University of California–San Francisco and Johns Hopkins University.2 In terms of a metric of performance, in  the United States spent approximately $ billion on research and development (R&D); of this total, approximately  percent was performed in universities,  percent in industry, and the remaining  percent in the “other” sector (National Science Board , vol. , fig. .). The relatively small percentage of R&D performed in academe belies the important role that universities play in the performance of basic, as opposed to applied, R&D. When basic research is separated out, one finds that universities are responsible for approximately  percent of all basic research in the United States ($. billion out of a total of $. billion in ), while industry is responsible for only  percent of all basic research (National Science Board , vol. , table .). The terms “basic” and “applied,” while useful for the classification schemes of government statistical agencies, oversimplify the research process and reasons for doing research. Donald Stokes () notes that much of today’s research is both “use inspired” and inspired by a quest for fundamental understanding. In honor of Louis Pasteur, Stokes classifies such research as falling into “Pasteur’s Quadrant.” Stokes argues that scientists     [18.226.169.94] Project MUSE (2024-04-25 16:01 GMT) increasingly work in Pasteur’s Quadrant, in part because of the scientific opportunities that have become available in recent years in such areas as biotechnology and, to extend his argument, nanotechnology. Stokes contrasts this...

Share