In lieu of an abstract, here is a brief excerpt of the content:

3 Craft vs. Science: “Be an Operator, Not a Valve Turner”1 In a 1936 magazine for sewage treatment plant operators, called The Digester, the Illinois Department of Health provided the following advice to the men who ran the state’s activated sludge sewage treatment plants: “Think of the aeration solids as your ‘workmen,’” it suggested, referring to the bacteria in the activated sludge tanks. “Retain as many as is necessary to do the work as it comes,” it advised, “but not too many, as they all require air to stay in condition.” “Don’t keep any more working organisms on the ‘payroll’ than necessary,” the article warned. “The excess workmen are just ‘shovel-leaners.’”2 In the narrative of this article, the bacteria were the workers; the human workers , the managers. Envisioning bacteria as workers was not unusual (figure 3.1). For decades, microbiologists had been conceiving of bacteria in terms of industrial work. “The idea of the activated sludge process is to get uncounted multitude of bacteria to work,” wrote Milwaukee’s T. Chalkey Hatton, for instance.3 Similarly, the task here was to try and obtain the maximum amount of work from the bacteria through control of the biological processes. Like a shop foreman managing his workers, the sewage treatment plant operator was to manage his microbial laborers. What sets this article apart from the usual metaphors, however, was that the advice itself was part of a concerted effort by engineers and other supervisors of sewage treatment plants to exert increasing control on their human laborers—the operators themselves. For, as sanitary engineers were discovering, controlling the bacterial process required control of the labor process. In this realization, managers of the industrial ecosystem were joining trends in industry more generally. Sanitary scientists often noted the relation between sewage treatment and industrial processes. “Treatment methods are just as truly chemical manufacturing processes as are the production of sugar and dyes,” wrote Arthur Buswell in his treatise on sewage treatment chemistry.4 “The Works Manager,” wrote John Farmer in 1914, “should look at the disposal of sewage in the light of a manufacturing process—the sewage discharged on to the works being the raw material and the final effluent the finished product.”5 So seeing their treatment plants as 84 Chapter 3 factories, sewage treatment engineers began to transfer the management techniques of chemical manufacturing into the sewage treatment industry. One hallmark of industrial organization at the time was scientific operation. Sewage treatment plants were joining a wide variety of other process industries in implementing scientific control of their production processes. Prior to the rise of scientific control, many industrial processes were managed by factory workers who had developed their craft through long experience. Operators used that experience to make continuous adjustments to achieve a high quality product. In the latter part of the nineteenth century, however, many of these industries began to institute new, scientific approaches to control, leading to profound Figure 3.1 Frontispiece to industrial pamphlet describing the process for producing butyl alcohol at Commercial Solvents Corporation, 1929. The microorganisms of the industrial ecosystem were commonly presented as “workmen,” placing the role of the human workmen in an ambiguous position, as both workers and managers of the bacterial laborers. In process control , who was to be controlled, the bacteria or the people? Source: Commercial Solvents Corporation , 1929, Community Archives, Vigo County Public Library [3.139.104.214] Project MUSE (2024-04-20 00:16 GMT) Craft vs. Science 85 changes in the labor process. Where workers had previously possessed autonomy, with scientific control their actions were increasingly regulated by sensors, alarms, and distant supervisors, “guided by signal lamps and a deviation indicator . . . stationed in a central instrument-control room.”6 As Harry Braverman, David Noble, Stephen Bennet, and other scholars have argued, scientific control also meant controlling the labor process. Process control was just one part of the innovations in industrial management that came under the umbrella of “scientific management.” Best known through the advocacy and writings of F. W. Taylor, scientific management was a concerted effort to rationalize all aspects of industrial work. This management movement helped lead to a profound deskilling of work and reduced industrial workers to simple valve operators.7 As in other industries, the establishment of process control in sewage treatment led to a prolonged struggle for shop floor control between operators and engineers. Who would determine the proper adjustments to make...

Share