Endpoint Strichartz estimates


We prove an abstract Strichartz estimate, which implies previously unknown endpoint Strichartz estimates for the wave equation (in dimension n ≥ 4) and the Schrödinger equation (in dimension n ≥ 3). Three other applications are discussed: local existence for a nonlinear wave equation; and Strichartz-type estimates for more general dispersive equations and for the kinetic transport equation.