Abstract

abstract:

Since Poonen's construction of a variety $X$ defined over a number field $k$ for which $X(k)$ is empty and the \'etale Brauer-Manin set $X({\bf A}_k)^{\textrm{Br,\'et}}$ is not, several other examples of smooth, projective varieties have been found for which the \'etale Brauer-Manin obstruction does not explain the failure of the Hasse principle. All known examples are constructed using ``Poonen's trick'', i.e., they have the distinctive feature of being fibrations over a higher genus curve; in particular, their Albanese variety is non-trivial. In this paper, we construct examples for which the Albanese variety is trivial. The new geometric ingredient in our construction is the appearance of Beauville surfaces. Assuming the $abc$ conjecture and using geometric work of Campana on orbifolds, we also prove the existence of an example which is simply connected.

pdf

Additional Information

ISSN
1080-6377
Print ISSN
0002-9327
Pages
pp. 417-431
Launched on MUSE
2017-03-30
Open Access
No
Back To Top

This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.