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Strategic Agent- Based 
Modeling of Financial Markets
Mich ael p.  w ellM a n a nd el aine wah

Understanding the implications of algorithmic trading calls for modeling financial markets at a level of fidel-

ity that often precludes analytic solution. We describe how agent- based simulation modeling can be com-

bined with game- theoretic reasoning to examine the effects of market variables on outcomes of interest. The 

approach is illustrated in a basic model where investors trade a single security through a continuous double 

auction mechanism. Our results demonstrate the feasibility of the approach, and raise questions about the 

use of spreads as a proxy for trading cost and welfare.
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Program trading has been a reality for many 

years now, and the pervasiveness, speed, and 

autonomy of trading algorithms continue to 

reach new heights. Algorithmic strategies de-

signed to respond to information within a few 

milliseconds or less are now widely deployed. 

The blink of a human eye, normally lasting 

over 0.3 seconds, may span hundreds of rounds 

of high- frequency trading (HFT). Although pre-

cise definitions or prevalence measurements 

of HFT are hard to come by, typical estimates 

agree that HFT accounts for over half of trad-

ing volume on U.S. equities and futures mar-

kets, and is increasingly common on currency 

exchange and fixed- income markets (Cardella 

et al. 2014).

With the ascent of algorithmic trading and 

HFT has come no small amount of public con-

troversy, for example, about whether this prac-

tice contributed to the “flash crash” of May 6, 

2010. Despite an abundance of available mar-

ket data, understanding this episode is chal-

lenging because of the multiplicity of actors 

and complexity of interactions. This is re-

flected in necessarily complicated and nu-

anced characterizations of the role of HFT, as 

in the conclusion by Andrei A. Kirilenko et al. 

(2014) that HFT was not the proximate cause, 

yet HFT presence shaped the environmental 

conditions for the crash and accelerated price 

movements in response to the triggering 

event.

One way that prevalent algorithmic trading 

can shape the trading environment is through 

strategies that quickly withdraw liquidity when 

observations indicate a situation outside the 

normal operating conditions. This response is 

quite rational, given that underlying algo-

rithms were derived and vetted on the basis of 

data from historical experience. When evi-

dence presents that the current situation devi-

ates qualitatively from historical conditions, 

the safe move is to turn off the algorithm. Of 

course, this is precisely the situation when the 
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market is most in need of liquidity, so if such 

algorithms control the main liquidity sources 

this poses a clear stability risk.

Because the markets recovered minutes af-

ter they plunged, the May 2010 flash crash 

caused no general economic damage beyond 

harm to specific investors and traders caught 

in the wave—save perhaps the intangible ero-

sion of confidence in the markets. The quick 

recovery is as mysterious as the precipitous 

drop, and there is no assurance that we will 

fare as well in the next flash- crash event. This 

next event is seemingly inevitable, as mecha-

nisms in place to act as circuit breakers have 

limited ability to prevent or ameliorate them 

(Subrahmanyam 2013), and no other measures 

have qualitatively changed the general condi-

tions of our financial markets. Subsequent 

smaller flash crashes in other financial assets 

(U.S. Treasury bonds in October 2014, U.S. dol-

lars in March 2015) remind us that the prospect 

looms, and with it potential contagion across 

exchanges and asset classes, possibly trigger-

ing generalized panic impinging on the real 

economy.

The spotlight on HFT grew particularly in-

tense in 2014 with the publication of Flash 

Boys, an engaging account by Michael Lewis 

(2014) of strategies employed by HFT firms to 

obtain and exploit speed advantages. Billions 

of dollars have been invested in new fiber- 

optic, microwave, and even laser- based com-

munication networks, in the effort to shave 

milliseconds or microseconds off the informa-

tion latency: the time it takes to transmit in-

formation across exchanges. To compete in 

this latency arms race firms spend additional 

billions on specialized hardware, co- location 

with exchanges, and development of stream-

lined software—possibly omitting error checks 

and other safety- enhancing features in the 

quest for ultimate speed.

Much of the debate about HFT revolves 

around the ramifications for real and perceived 

transparency and fairness of market opera-

tions; see, for example, criticisms by Haim 

Bodek (2013) about the proliferation of special 

order types catering to HFT strategies. This 

specific issue drew the attention of regulators 

at the U.S. Securities and Exchange Commis-

sion, who in January 2015 fined the exchange 

operator Direct Edge $14M for insufficient 

transparency about the availability and opera-

tion of special order types (Beeson 2015).

Some observers conclude that the state of 

U.S. equity trading markets is fundamentally 

broken (Arnuk and Saluzzi 2012) and call for 

sweeping reform. Others suggest that the ap-

parent downsides of HFT are tolerable relative 

to the claimed beneficial effects of modern 

electronic trading. Some of the disconnects in 

this debate can be attributed to confounding 

qualitatively distinct forms of HFT, conflicting 

assumptions about market organization, or in-

formation hiding and obfuscation to protect 

proprietary interests.

Such issues can be addressed by careful re-

search conducted in the public domain. Much 

of the finance literature on high- frequency 

trading (HFT) takes an empirical approach, 

and has come to mixed conclusions on the ef-

fects of HFT on overall market quality. For ex-

ample, in a survey discussing the strategies, 

benefits, and costs of HFT, Charles M. Jones 

(2013) points to the positive role of HFT firms 

in market making and providing liquidity 

(Hendershott, Jones, and Menkveld 2011). The 

liquidity provided by algorithmic market mak-

ers, however, may be more erratic at high fre-

quencies, and may be accompanied by in-

creased adverse selection (Menkveld 2014). The 

effects of algorithmic trading operate along 

multiple pathways, with conflicting implica-

tions for market performance. As a result, 

most detached and deliberate commentators 

agree that uncertainty and concern about the 

ramifications of HFT, both potential and real-

ized, are justified.

These uncertainties are difficult to resolve, 

in part because the factors at play in modern 

high- frequency trading are unprecedented. 

The most important new features in our view 

are the two following factors:

1. The very speed of operation renders details 

of internal market operations—especially 

the structure of communication channels 

and information—systematically relevant 

to market performance. In particular, the 

latencies (time lags) between market events 

(transactions, price updates, order submis-

sions) and the point in time when various 
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actors find out about these events become 

pivotal, and even the smallest differen-

tial latency can significantly affect trading 

outcomes.

2. The autonomy and adaptivity of algorithmic 

trading strategies takes them out of the 

scope of direct human control, and makes 

it challenging to understand how they will 

perform in unanticipated circumstances. 

The challenges are exacerbated by the in-

creasing use of sophisticated machine 

learning techniques to derive trading strat-

egies, and the fundamental multi- agent na-

ture of the execution environment.

These two factors are closely interrelated, as 

autonomy is necessary for operation at super-

human speed. Some issues, such as interac-

tions among adaptive and data- driven strate-

gies, apply to algorithmic trading even when it 

is not conducted at high frequency (Easley, 

López de Prado, and O’Hara 2012).

In this article we outline a computational 

approach to analysis of financial markets that 

offers the fidelity needed to capture complex 

algorithmic trading environments yet is ame-

nable to strategic reasoning based on game- 

theoretic principles. Following background on 

simulation modeling of financial markets, we 

present a simple yet realistic model environ-

ment and illustrate the approach for game- 

theoretic selection of trading strategies and 

reasoning about the effects of market condi-

tions through equilibrium comparisons. Our 

results provide evidence for several proposi-

tions relevant to market performance and how 

it is assessed. Key findings include:

• Modeling trader patience in terms of the 

time horizon they are willing to monitor 

and reenter markets, we find robustly that 

patient traders are able to achieve greater 

gains from trade, up to essentially full effi-

ciency with sufficient horizon.

• All else equal, more frequent market reen-

try and reduced fundamental volatility in-

crease welfare.

• The common use of quoted or effective 

spreads as a proxy for welfare is not a reli-

able guide for comparing market perfor-

mance.

simUl aTion modeling of  

financial maRkeTs

Most of the finance community’s prior re-

search on HFT takes an empirical approach, 

employing available order, quote, and transac-

tion data streams to measure market activity 

and relate relevant variables. This has often 

yielded great insight and represents an essen-

tial form of inquiry. Analysis of available data 

is ultimately limited, however, with respect to 

counterfactual questions, such as the response 

of financial markets to rarely occurring shocks 

or the effects of alternative market rules and 

regulations. Answering such questions inher-

ently requires models that incorporate causal 

premises, specifically, assumptions as to how 

trading behavior is shaped by environmental 

conditions.

Theoretical models can support such infer-

ence, and these also represent an important 

resource from the finance research literature. 

Trading in markets can be formulated as a 

game, and game- theoretic equilibrium con-

cepts can be employed to characterize behavior 

in markets by rational agents. However, model-

ing algorithmic trading entails accommodat-

ing complex information and fine- grained dy-

namics, which often renders game- theoretic 

reasoning analytically intractable.

An alternative, computational, approach is 

to model financial markets in simulation. Sim-

ulation can faithfully capture complex market 

microstructure and trading interactions at ar-

bitrarily fine degrees of temporal granularity. 

Algorithmic and other traders are cast as 

agents, with various objectives and informa-

tion sources, and available actions as dictated 

by market rules. This approach, generally 

known as agent- based modeling (ABM), ana-

lyzes a complex social system through simula-

tion of fine- grained interactions among the 

constituent decisionmakers (the agents), de-

scribed and implemented as (usually simple) 

computer programs. ABM researchers in the 

social sciences typically justify adopting the 

agent- based approach on the basis of tractabil-

ity, or avoiding restrictive assumptions about 

rationality or other characteristics (Tesfatsion 
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2006). Richard Bookstaber (2012) invokes these 

arguments and others in expressly advocating 

the development of agent- based models for in-

vestigating threats to financial stability.

ABM applications to financial trading date 

back to the 1990s, notable early models includ-

ing those by Moshe Levy, Haim Levy, and Sorin 

Solomon (1994) and the Santa Fe Artificial 

Stock Market (Arthur et al. 1997). Agent- based 

financial models facilitate consideration of 

heterogeneous agent types (Boswijk et al. 

2007), and multiple forms of learning (LeBaron 

2011). Researchers have employed ABMs to 

shed light on central issues in today’s financial 

markets, such as the impact of a transaction 

tax (Fricke and Lux 2015), and conditions that 

can produce instabilities reminiscent of the 

2010 flash crash (Lee, Cheng, and Koh 2011; 

Paddrik et al. 2012).

In our own previous work we have used 

agent- based simulation of financial markets to 

model a variety of trading scenarios. We focus 

on the impact of algorithmic trading on alloc-

ative efficiency (social welfare), which is a mea-

sure of how well markets distribute resources 

(in this context, financial securities) to market 

participants. Greater efficiency means im-

provements (in aggregate) in investors’ gains 

from trading.

In one study, we investigated the effect of 

latency arbitrage, an HFT strategy that exploits 

speed advantages in identifying price dispari-

ties across fragmented markets (Wah and Well-

man 2013). We found that latency arbitrage 

harms market efficiency, not even counting the 

costs of the latency arms race. We proposed 

that this arms race can be eliminated by replac-

ing continuous- time trading with frequent- call 

markets, a mechanism whereby orders accu-

mulate and are matched periodically, for ex-

ample, once per second. Frequent- call markets 

neutralize tiny speed advantages (Budish, 

Cramton, and Shim 2015) and can improve 

market efficiency in many circumstances.

One of our recent studies examines the wel-

fare effects of market making, finding that 

market makers generally improve efficiency, 

but provide benefits to investors only when the 

investors are sufficiently impatient (Wah and 

Wellman 2015). The model we present here fol-

lows the configuration of this study and re-

ports an extended analysis of trading strategies 

(without the market makers) explored there.

secURiT y TR ading model

Our analysis focuses on a single security traded 

in a two- sided market. Though the model is 

simple, it captures key characteristics of real- 

world market mechanisms and trading behav-

ior. Here we present a basic description of mar-

ket operation, and the objectives and strategies 

of traders. The appendix provides a more de-

tailed mathematical description.

The market operates over a finite time ho-

rizon, which we call T. Agents enter and reenter 

the market at random intervals to trade. On 

each arrival these traders submit a limit order 

to the market (replacing their previous order, 

if any), indicating the price at which they are 

willing to buy or sell a single unit of the secu-

rity.

The market mechanism is a continuous 

double auction (CDA) (Friedman 1993), which 

means that a new buy or sell order transacts 

immediately whenever it matches an existing 

order in the market. The trade executes at the 

price of the incumbent order. If an order does 

not match, it is added to the CDA’s order book. 

The CDA maintains price quotes reflecting the 

best outstanding orders. These quotes com-

prise two parts: a bid quote BID reflects the 

highest current buy offer, and ask quote ASK 

the lowest current offer to sell.

The market environment is populated by a 

set of traders, representing investors. Each in-

vestor has an individual valuation for the secu-

rity made up of private and common compo-

nents. The common component is represented 

by a fundamental value, which can be viewed 

as the intrinsic value of the security. This fun-

damental value varies over time according to a 

stochastic process.

The private component of value is a specific 

agent’s reason for trading. For example, an 

agent may have positive value for a security 

that complements its portfolio (for example, it 

hedges other risk), and negative value for un-

diversified risk. Similarly, the need for savings 

or liquidity is reflected in the private value.

The common and private components are 

effectively added together to determine the 

agent’s valuation of the security. Agents accrue 
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private value on each transaction, and at the 

end of the trading horizon evaluate their ac-

cumulated inventory on the basis of the end- 

time fundamental.

Given a market mechanism and valuation 

model, investors pursue their trading objec-

tives by executing a trading strategy in that en-

vironment. As noted, we assume that traders 

arrive stochastically at the market over a time 

horizon, and at each arrival have the opportu-

nity to submit a limit order to buy or sell a 

single unit of the security. The strategy defines 

how this order is generated, on the basis of 

price quotes and current holdings.

Though the CDA market mechanism and 

environment as described here are relatively 

simple, the associated bidding game is quite 

complex, owing to the incompleteness of in-

formation (private valuations) and the dynam-

ics of arrivals and repeated trading. No analytic 

solution—nor any constructive theoretical 

characterization—is known for this or similar 

CDA games, and so the literature has generally 

relied on simulation studies. Many previous 

works have explored CDA bidding strategies 

(Das et al. 2001; Friedman 1993; Wellman 2011), 

so there is a body of ideas to work with. Many 

of the proposed solutions are variations of the 

so- called zero intelligence (ZI) family of bid-

ding strategies (Gode and Sunder 1993), and 

that is the class of approaches we consider 

here.

In the ZI bidding strategy, agents determine 

an amount of surplus to ask for, and submit a 

corresponding limit order. The strategy param-

eters Rmin and Rmax (0 ≤ Rmin ≤ Rmax) govern the 

range of surplus requests. Our extended ver-

sion of ZI employs a third parameter, η ∊ [0,1], 
which is a threshold determining whether to 

just take the currently available surplus based 

on the price quotes. The details of our strategy 

implementation are provided in the appendix.

Although ZI is quite simplistic as a trading 

strategy, it does reflect cognizance of com-

mon and private value components, and 

through setting of the strategic parameters 

(Rmin, Rmax, η) it accommodates a spectrum of 

surplus- demanding behavior. The most effec-

tive settings of these parameters vary depend-

ing on the environment (such as number of 

other traders, valuation distributions, time ho-

rizon, arrival rate) and the strategies employed 

by other traders. Any conclusions for market 

performance, therefore, are sensitive to choice 

of these ZI parameters. We have developed a 

game- theoretic process for choosing strategic 

parameters in simulation models, described in 

detail in the next section.

empiRical game- TheoReTic 

analysis

A financial market simulation model provides 

a way for an experimenter to directly answer 

questions of the form “What happens when 

the trading strategies <fill in strategy set> inter-

act in environment <fill in environment specifi-

cation>?” Choice of environment specification 

is driven by the target subject of study, and may 

be informed by existing models and data. The 

choice of strategies, however, is up to the mar-

ket participants, and since strategies are not 

generally observable in market data, the exper-

imenter must consider how traders would be 

likely to act in a given market situation. The 

conventional economic assumption is that 

traders rationally pursue their objectives, and 

the standard economic approach to strategy 

choice relies on reasoning based on rationality 

criteria.

The empirical game- theoretic analysis 

(EGTA) approach incorporates such reasoning 

in a simulation- based framework. Figure 1 il-

lustrates how EGTA generates a game model 

from financial- market simulations. First, we 

configure the financial- market simulator on 

the basis of the market mechanisms (number 

of markets, continuous versus periodic clear-

ing, quoting policies), environmental condi-

tions (numbers and types of traders, commu-

nication latencies), and agent valuations 

(fundamental process and private component 

distributions) we wish to study. These configu-

rations may have both structural and paramet-

ric elements. For example, we used this simu-

lator to investigate latency arbitrage, an HFT 

tactic that exploits speed advantage to profit 

in fragmented markets. Our study of latency 

arbitrage (Wah and Wellman, 2013) was based 

on a two- market model, with individual- market 

and global public price quotes (the national 

best bid and offer, or NBBO) available to regu-

lar and high- frequency traders at differential 
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latency. Given this structure, we then varied 

the latency parameter to evaluate its effect on 

market outcomes. That study also compared 

to single- market models, employing CDA or 

call- market clearing mechanisms.

The simulator configuration includes a 

specification of the numbers of players in var-

ious roles. Each role is associated with a set of 

available strategies. Within each role, players 

are treated as ex ante symmetric. (This is with-

out loss of generality, as we can always associ-

ate a unique role with each player.) In our study 

of market making, for example, there were two 

roles: background investor and market maker. 

In the current study, we consider only the in-

vestor role. The strategy set is the family of ZI 

bidders defined earlier.

Once configured, we can feed into the mar-

ket simulator a strategy profile, defined as an 

assignment of strategies to each player. In our 

case, assigning a strategy means assigning the 

ZI parameters (Rmin, Rmax, η) for each trader. 

Each simulation run produces an outcome (set 

of trades), which in turn defines a net surplus 

for each trader (value of final holdings minus 

cash flow). This can be interpreted as the 

agent’s payoff for that run of the market game. 

In general, given the stochastic nature of the 

market simulation (random draws of valua-

tions, fundamental time series, agent arrival 

patterns), we require many runs to yield accu-

rate estimates of payoffs for any given strategy 

profile.

To perform EGTA of a particular scenario, 

we evaluate a large number of strategy profiles 

in this manner, collecting the estimated pay-

offs in an outcome database. From this data 

we then induce a game model. This game 

model may generalize to nonsimulated profiles 

through regression (Vorobeychik, Wellman, 

and Singh 2007); however, in many cases (such 

as this study) we generate an incomplete game 

model that includes payoff estimates only for 

simulated profiles.

Given a game model, we can perform any of 

the usual game- theoretic analysis operations, 

for example, computing Nash equilibrium 

(NE). In our study, we focus on identifying sym-

metric mixed- strategy NE. Given a set of evalu-

ated profiles, our algorithm starts by finding 

the maximal complete subgames (henceforth 

referred to as subgames): sets of strategies 

such that all profiles are evaluated. For each 

subgame, we compute subgame equilibria by 

the replicator dynamics algorithm (Gintis 

2000), which starts from a particular probabil-

ity distribution over strategies, then increases 

the probability of those strategies that perform 

better than average. We run this replicator dy-

namics method initialized at a diverse set of 

points in the simplex, then test whether these 

subgame equilibria are equilibria in the full 

game by evaluating all deviations outside the 

subgame.

In principle, the EGTA approach could ap-

ply to a game of any size. In practice, we are 

limited by the computation available for simu-

lation, which is proportional to the number of 

profiles evaluated. Financial markets often in-

volve a large number of traders, and there is a 

Figure 1. Empirical Game-Theoretic Analysis

Source: Authors’ compilation.

Note: Simulating a large number of strategy profiles produces data used to induce a game-theoretic 

model.

Financial 
market 
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Outcome 
DB

(profits, 
surplus)
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• Environment conditions
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large space of possible strategies. Even if we 

restrict attention to ZI strategies, there is a 

three- dimensional parametric space of strat-

egy settings. Let N denote the number of trad-

ers, and S the number of strategies. In this 

study, we investigate markets with N = 25 and 

N = 66, and consider S = 9 distinct settings for 

the ZI strategy. A symmetric game has

( )N – S + 1
N

distinct strategy profiles (that is, the number 

of different ways of drawing N items from  

N – S + 1 candidates), and so even games of this 

modest size cannot be explored exhaustively. 

For example, with N = 25 and S = 9, the number 

of profiles is 13.9 million.

To enable analysis of games at this scale, we 

employ an approximation technique called 

deviation- preserving reduction (DPR) (Wieden-

beck and Wellman 2012). DPR approximates an 

N- player game by a smaller k- player game with 

the same strategy set. The method estimates 

payoffs in the reduced game based on a map-

ping from select profiles in the full game. For 

example, with N = 25 and k = 5, the payoff to 

the player playing strategy a in the reduced- 

game profile (a, b, c, d, d) would be obtained 

by simulating a 25- player profile where one 

agent plays a and the other 24 are divided 

across the remaining strategies as follows: 6 

each play b and c, and 12 play d. This reduction 

is termed “deviation- preserving” because it ac-

curately reflects the first player’s relative pay-

offs for playing alternative strategies in this 

context. It is still an approximation, however, 

because the other players are treated as aggre-

gates. This technique has been shown to pro-

duce good approximations for purposes of 

equilibrium identification in a variety of large 

games. In this study, we employ 5- player reduc-

tions for the N = 25 cases, and 6- player reduc-

tions for N = 66.

e xpeRimenTal seTUp

The experiments reported here elaborate the 

analysis of trading environments investigated 

in our prior work (Wah and Wellman 2015), fo-

cusing on the games with no market maker 

present. Traders follow the ZI strategy de-

scribed, with settings (Rmin, Rmax, η) selected 

from the following set of thirteen triples:

{ (0,65,0.8), (0,125,0.8), (0,125,1), (0,250,0.8), 

(0,250,1), (0,500,1), (250,500,1), (0,1000,0.8), 

(0,1000,1), (500,1000,0.4), (0,1500,0.6), 

(1000,2000,0.4), (0,2500,1) }

This set was determined in a fairly ad hoc 

manner. We seeded it with all of the η = 1 strat-

egies above, then extended it to include some 

η = 1 cases based on finding improvements 

from initial equilibrium candidates. We also 

tried some strategies with Rmin ∊ {2500,5000} and 

Rmax ∊ {10000,15000}, but these never appeared in 

equilibrium so were discarded.

We consider three instances of the market 

environment, labeled A, B, and C. All three as-

sign traders a private valuation generated with 

variance parameter σ2
PV = 5 × 106 and qmax = 10. 

(See the appendix for definitions of these and 

other parameters.) The global fundamental 

has a mean value r = 100000 and evolves with 

mean reversion κ = 0.05. The environment dif-

ferences are focused on two parameters:

• Agent reentry rate: λ = 0.0005 (environment 

A) or λ = 0.005 (environments B and C)

• Fundamental shock variance: σ2
s = 106 (envi-

ronments A and B) or σ2
s = 5 × 105  (environ-

ment C)

For each environment, we consider three dif-

ferent time horizons T (in 1,000s) and two set-

tings for number of traders N. For N = 25 we 

considered an additional horizon T = 24. Thus 

we explored a total of 21 games using the EGTA 

approach. We label each game according to the 

environment (A, B, C) and time horizon T, 

where T ∊ {1, 4, 12, 24}; for example, B12 is envi-

ronment B with time horizon 12.

ResUlTs

To analyze a particular game configuration we 

perform a systematic search, evaluating strat-

egy profiles through simulation with the goal 

of identifying equilibria. Our search process 

starts by considering each ZI strategy in self- 

play—the nine pure symmetric profiles where 

every agent plays the given strategy. We then 
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iteratively generate additional profiles to simu-

late according to the following criteria:

• For any subgame equilibrium that is not re-

futed in the full game, evaluate all devia-

tions outside the subgame.

• Extend a refuted subgame equilibrium by 

adding the best response strategy to the set 

of strategies in that equilibrium profile’s 

support.

Note that deviations and subgame profiles are 

selected on the basis of the reduced 5-  or 

6- player games defined by our DPR approxima-

tion. The payoffs for these reduced games are 

estimated based on simulation results from 

corresponding full- game profiles.

For each of the 21 games analyzed, this 

 process succeeded in identifying at least one 

and up to three distinct symmetric equilibria. 

This typically required evaluating 1,000 or 

2,000 full- game profiles, with an actual range 

of 553 to 4,167. Each profile evaluated was sim-

ulated at least 20,000 times. Overall, the com-

putation deployed for this study occupied doz-

ens of cores on a large- scale computing cluster 

for much of the time over a period of several 

months.

A summary of the equilibria across environ-

ments is presented in figure 2. For each market 

size (25, 66) and each environment (A, B, C) we 

plot a series of points corresponding to the five 

time horizons T considered. Each point sum-

marizes the equilibrium ZI parameters using 

the average of surplus- request midpoints,  

Rmid = (Rmin + Rmax)/2, with the average weighted 

by probability in the equilibrium profile. For 

games with multiple equilibria, we display the 

range of Rmid values using error bars.

The Rmid statistic for a profile represents the 

average surplus requested in a trader limit or-

der, but only approximately, as it ignores the 

effect of the quote threshold parameter η. Fig-

ure 2 suggests some general trends in this sta-

tistic, but we are reluctant to draw strong con-

clusions, given the roughness of this measure 

and the inconsistency in the observed trends. 

Nevertheless, we do generally see that the thin-

ner markets (N = 25) have higher surplus re-

quests, and that there is some tendency for 

these requests to decrease with time horizon, 

particularly for environment A.

Perhaps the most salient outcome variable 

is market efficiency, which we measure by to-

tal surplus. For each equilibrium we evaluated 

total surplus from 10,000 sample runs over 

the full- game mixed profile. Figure 3 displays 

the market efficiency exhibited in equilibrium 

across our 21 games. For this variable, the re-

Figure 2. Median Rmid (the Midpoint of the ZI Range [Rmin, Rmax]) Value for Equilibria in the Three 

Environments A, B, and C, for N = 66 and N = 25 

Source: Authors’ simulation results.

Note: The X-axis is the simulation length T (in 1000s). The error bars for each point indicate the mini-

mum and maximum Rmid values for equilibria in a market configuration.

R
mid

, N = 25

Midpoint of ZI Range

S
im

u
la

ti
o

n
 L

en
g

th
 (

T
h

o
u

sa
n

d
s)

S
im

u
la

ti
o

n
 L

en
g

th
 (

T
h

o
u

sa
n

d
s)

Midpoint of ZI Range

0

100

200

300

400

500

600

700

800

1 4 12 24

R
mid

, N = 66

0

100

200

300

400

500

600

700

800

1 4 12

A B C A B C



11 2  f i n a n c i a l  r e f o r M

r s f :  t h e  r u s s e l l  s a g e  f o u n d a t i o n  j o u r n a l  o f  t h e  s o c i a l  s c i e n c e s

lationships are quite apparent. Welfare gener-

ally increases with time horizon. The reason 

is that with longer horizons, traders have 

more reentries and thus greater opportunity 

to find mutually beneficial trades. With 

enough time, the ZI traders are able to achieve 

a high fraction of full efficiency in equilib-

rium.

It is also apparent from figure 3 that envi-

ronments with more frequent trader entries (B 

and C compared to A) have higher surplus, for 

any given horizon. This holds for the same rea-

son that extending horizon improves effi-

ciency. Closer inspection of the figure reveals 

that when holding arrival rate and horizon 

fixed, for N = 66, reducing fundamental volatil-

ity (moving from environment B to C) increases 

efficiency to a small but consistent degree. It 

seems that with thick markets, high variance 

on the fundamental often leads to extramar-

ginal trades, which then require additional en-

tries to correct.

Inspection of the number of trades pro-

duced in equilibrium (figure 4) is also illumi-

nating. A few equilibrium instances generate 

high efficiency but produce more trades than 

optimal, indicating that these runs involve 

agents who make trades and reverse them on 

subsequent entries.

spRe ads and maRkeT efficiency

The final question we examine with data from 

our EGTA study concerns the reliability of 

spreads as a proxy for market efficiency or 

welfare. True transaction cost, or the differ-

ence between the price of execution and the 

true value of the security, is a measure of the 

net change in welfare of market participants. 

When welfare is not directly observable, as is 

generally the case for real- world data, proxy 

measures for transaction costs can be em-

ployed to estimate changes in welfare (Goet-

tler et al. 2005). Estimation of the cost of trad-

ing relies on the intuition that in the absence 

of execution costs, transactions would occur 

at the underlying value of the security. As 

such, the difference between trade price and 

any proxy for the value of the security gives an 

estimate of the cost of execution (Bessem-

binder and Venkataraman 2010). There are 

multiple ways to estimate these execution 

costs. The simplest of these is the quoted 

Figure 3. Comparison of Welfare (Total Surplus) Across Thirty Game Environments 

Source: Authors’ simulation results.

Note: The top dotted line is the optimal social welfare available with sixty-six traders (44,155); the bot-

tom dotted line is the optimal welfare available with twenty-five traders (16,306). Error bars indicate 

the minimum and maximum values for equilibria in a game.
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spread, which is defined at a particular time 

point as the difference between the BID and 

ASK quotes. We summarize quoted spread for 

a scenario run as the median spread over all 

time points. Figure 5 presents statistics on 

quoted spreads for equilibrium trading in our 

21 game configurations. As one would expect, 

spreads are always greater in thinner markets, 

all else equal. We also tend to find smaller 

spreads in the scenarios exhibiting greatest 

surplus (compare figure 3), although this cor-

respondence is rough and inconsistent at 

best.

If quotes vary significantly over time, aggre-

gating quoted spreads over all time points may 

not accurately reflect trading costs. An alterna-

tive is the effective spread, which focuses on 

spreads in effect at the time of actual trades 

(Bessembinder 2003; Madhavan et al. 2002).1 

Specifically, our aggregate measure of effective 

spread takes the mean BID- ASK difference over 

all times when a trade occurs. These effective 

spread values for the equilibria found in each 

environment are shown in figure 6.

We see that effective spreads are sometimes 

substantially lower than the quoted spreads 

and never vice versa (figure 5), reflecting the 

fact that a new limit order is more likely to 

match at times when the spread is tight. Nev-

ertheless, quoted and effective spreads are 

highly correlated, suggesting that quoted 

spreads can serve as a predictor for effective 

spreads. As for quoted spreads, tighter effec-

tive spreads often correspond to increased wel-

fare in the corresponding environment, but 

this is not consistently the case.

Such inconsistency may not be surprising, 

given that other factors also vary systematically 

Source: Authors’ simulation results.

Note: The dotted lines represent the average number of trades required for socially optimal allocations, 

with N = 66 (115 trades, top dotted line) and N = 25 (43, bottom dotted line). Error bars indicate the 

minimum and maximum values for equilibria in a game.

Figure 4. Average Number of Trades Generated in Equilibrium, Across Twenty-One Game 

Environments 
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1. Another spread metric is the realized spread, which samples the spread n periods after a trade, as a proxy for 

the post- trade value of the security, to capture the price impact of the trade or to capture how the market has 

incorporated the private information conveyed by the trade (Bessembinder and Venkataraman 2010). It is unclear, 

however, what time period n is appropriate in our market model. Exploratory measurements revealed that in our 

environments, realized spreads differ widely depending on the value of n selected; hence, we omit realized 

spreads from further discussion.
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Source: Authors’ simulation results.

Note: Error bars indicate the minimum and maximum values for equilibria in a game. 

Figure 5. Quoted Spread (Measured as the Median BID-ASK Difference over the Duration of the 

Simulation) for Twenty-One Game Environments
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Figure 6. Effective Spread (Measured as the Mean BID-ASK Difference over the Transaction Time 

Points) for Twenty-One Game Environments 

Source: Authors’ simulation results.

Note: Error bars indicate the minimum and maximum values for equilibria in a game.
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across game instances. We tested the corre-

spondence of spreads and welfare within 

games by examining cases of multiple equilib-

ria. Six of our games have multiple equilibria, 

and in only two (that is, one- third) does the 

ordering of quoted spread accord with the or-

dering of welfare. For effective spread, the cor-

respondence also holds in only two of six 

cases.

To further examine the efficacy of spread 

measures as a proxy for welfare, we simulate 

10,000 samples of five pure- strategy profiles for 

[1
8.

11
8.

1.
15

8]
   

P
ro

je
ct

 M
U

S
E

 (
20

24
-0

4-
20

 1
5:

03
 G

M
T

)



 S t r a t e g i c  a g e n t -  B a S e d  M o d e l i n g  115

r s f :  t h e  r u s s e l l  s a g e  f o u n d a t i o n  j o u r n a l  o f  t h e  s o c i a l  s c i e n c e s

N = 66 and N = 25 under fixed market configu-

ration (game B12). The strategies of these pro-

files all belong to the ZI family, with the follow-

ing ranges (η = 1 unless otherwise stated):

• B12a: ZI[0, 125] with η = 0.8

• B12b: ZI[0, 250]

• B12c: ZI[0, 1000]

• B12d: ZI[0, 2500].

• B12e: ZI[500, 1000] with η = 0.4

In each of these profiles, all N traders play the 

specified strategy. The surplus of each profile 

is shown in figure 7, and the corresponding 

spread measures are in figure 8. We measure 

quoted spread as a time series across the dura-

tion of the simulation and report the median 

spread, and we report effective spread as the 

mean over all transactions.

We find that for both populations, the sur-

plus is the lowest for profile B12e and is rela-

tively constant for profiles B12a to B12c. Both 

spread measures, in contrast, widen over the 

a- to- e range, which properly reflect the in-

crease in welfare from c to e, but fail to accu-

rately mirror the flat welfare rankings in pro-

files B12a to B12c. This is particularly true for 

quoted spread. Effective spread comes closer 

to matching the flat area overall surplus for 

N = 66, but its correspondence breaks down in 

the thinner market with 25 traders, for example 

in the increased spread from B12b to B12c.

As true value of the security is unobservable 

in real data, proxies such as quoted and effec-

tive spread may often be the best available pre-

dictors of transaction costs. However, accu-

rately computing effective spreads from real 

data is often difficult, as it is not always readily 

apparent from historical trade prices and 

quotes which price quote corresponds to a 

given transaction, especially when order- level 

data are not available. In addition, effective 

spread measures can be particularly sensitive 

Figure 7. Overall Surplus in Five Pure-Strategy 

Profiles for N = 66 and N = 25 in Game B12 

Source: Authors’ simulation results.

Note: The ZI strategies are written in the form 

[Rmin, Rmax; η]. 
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Note: The ZI strategies are written in the form [Rmin, Rmax; η]. 

Figure 8. Quoted Spread and Effective Spread in Five Pure-Strategy Profiles for N = 66 and N = 25 in 

Game B12
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in electronic markets, with frequent quote up-

dates and more active trading (Piwowar and 

Wei 2006).

A more fundamental problem with effective 

spread, however, is that it was developed for 

intermediated markets, where prices are set by 

a middleman, such as a dealer. In a pure limit- 

order market, prices are determined by arriv-

ing traders and thus are not necessarily equal 

to the expected value of the security. Ronald L. 

Goettler, Christine A. Parlour, and Uday Rajan 

(2005) demonstrate that the midpoint of the 

BID- ASK spread is not a good proxy for a secu-

rity’s true underlying value. Given that it em-

phasizes the surplus of the trade- initiating or-

der submitter and omits the surplus of the 

incumbent order submitter, effective spread is 

not a generally representative estimate of wel-

fare.

conclUsions

We have presented an approach to strategic 

reasoning, using agent- based simulation mod-

els, for application to understanding trading 

behavior in financial markets. Contrary to 

views often expressed by advocates (and re-

spectively, critics) of agent- based modeling and 

game- theoretic analysis, the two methods are 

actually quite complementary, together sup-

porting principled strategic analysis of com-

plex dynamic scenarios. We illustrated the ap-

proach by deriving and analyzing equilibrium 

trading strategies for a variety of continuous 

double auction scenarios, differing in number 

of traders, trading horizon, arrival rate, and 

fundamental volatility.

Our study confirms several expected rela-

tionships among market outcomes, and par-

ticularly underscores the importance of trader 

reentry in achieving efficient outcomes in con-

tinuous double auctions. Data from simula-

tions were also instrumental in demonstrating 

the limitations of relying on proxies such as 

price quotes for statistics of central interest, 

such as welfare.

The unobservability of key elements (strate-

gies, welfare) in empirical data provides a 

strong impetus behind the simulation ap-

proach to modeling financial markets. Our 

simulation studies of latency arbitrage and 

market making have shed light on the costs 

and benefits of such strategies, in terms of 

their effects on the welfare of investors. These 

works highlight the importance of distinguish-

ing among different roles of algorithmic trad-

ing, separating the deleterious practices (la-

tency arbitrage) from those that improve 

market performance (liquidity provision to im-

patient investors). This argues against broad- 

brush regulatory policies that raise the costs 

of algorithmic trading across the board, in fa-

vor of more targeted interventions that deter 

the harmful forms of algorithmic trading with-

out unduly burdening beneficial practices.

Our ongoing research is applying the ap-

proach illustrated here to further key questions 

in the behavior of financial markets, for exam-

ple: comparing continuous and periodic trad-

ing rules, effects of competition among market 

makers, and adoption of alternative market 

mechanisms (Wah, Hurd, and Wellman 2015). 

Models combining rich simulation with game- 

theoretic reasoning can play a constructive role 

in evaluating alternative market mechanisms 

and enhancing our understanding of the ef-

fects of algorithmic trading in a wide range of 

scenarios.

appendix

Mathematical Model Formulation

In the Appendix we provide further technical 

details of our models of the market environ-

ment and agent trading strategies.

Market Operation and Agent Valuations

We model a single security traded in a two- 

sided market. Prices are integers, which means 

they are discretized at a tick size of any desired 

granularity. Time is also defined on a discrete 

domain, with finite horizon T. Agents arrive to 

submit their limit orders according to a Pois-

son distribution, with a rate parameter λ defin-

ing the probability of arriving in each unit 

time. The market mechanism is a standard 

limit- order market, or continuous double auc-

tion (CDA).

Traders value the security on the basis of a 

common fundamental value, in combination 

with an individual- specific private value. We 

denote by rt the fundamental value for the se-

curity at time t. The fundamental time series 
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is generated by a mean- reverting stochastic 

process:

rt = max[0, κr + (1 – κ)rt–1  + ut].

Parameter κ ∊[1,0] specifies the degree to which 

the fundamental reverts back to the mean r, 

and parameter ut ~ N(0,σ2
s) is a random shock 

at time t.

The private valuation component for agent 

i is a vector

Θt = (θi
–qmax+1, . . . , θi

+1, . . . , θi
qmax),

where qmax > 0 is the maximum number of 

units an agent can hold (either long or short). Θt specifies the marginal private benefits to 

agent i of trading single units, according to i’s 

current net position. Element θi
q is the incre-

mental private benefit obtained from selling 

one unit of the security, given current position 

q, where positive (negative) q indicates a long 

(short) position. Similarly, θi
q+1 is the marginal 

private gain from buying an additional unit 

given current net position q. This representa-

tion is similar to the model of Goettler, Chris-

tine A. Parlour, and Uday Rajan (2009).

Agent i’s private valuation vector is gener-

ated by drawing 2 qmax values independently 

from a Gaussian distribution, N(0,σ2
PV). To en-

sure that the valuation reflects diminishing 

marginal utility, that is, θqʹ ≥ θq for all qʹ ≤ q, we 

sort the drawn values before assigning the vec-

tor Θi.

At the end of the trading horizon, an 

agent’s total value is the sum of private val-

ues accrued on each transaction, plus the 

worth of its final holdings evaluated at rT, the 

end- time fundamental value. Agent i’s valua-

tion vi(t) for the security at time t therefore 

depends on its current position qt and the 

value of the common fundamental at the end 

of the trading horizon:

 vi(t) = rT + { θi
qt+1 if buying one unit

 θi
qt if selling one unit

The surplus of a trade is the difference be-

tween valuation (including both common and 

private components) and transaction price. For 

a single- quantity limit order transacting at 

time t and price p, a buyer B obtains surplus 

vB(t) – p, whereas seller S obtains surplus 

p – vS(t). Since the price and fundamental 

terms cancel out in exchange, the total surplus 

achieved when B buys from S is θB
q(B)+1 – θS

q(S)+1, 

where q(i) denotes the pre- trade position of 

agent i.

Trading Strategies

An agent’s trading strategy governs how it gen-

erates a limit order each time it arrives to the 

market, as a function of its state and informa-

tion. To simplify the strategy structure, we as-

sume that the trader flips a coin on each arrival 

to decide whether its order on that round will 

be to buy or to sell. As a result, agent i’s deci-

sion boils down a price for its new limit order, 

as a function of its valuation vector Θi, current 

holdings q(i), and its history of market obser-

vations (transactions and price quotes).

In the zero intelligence bidding strategy, 

agents bid for a randomly determined amount 

of surplus. Our extended version of ZI employs 

three parameters: Rmin and Rmax (0 ≤ Rmin ≤ Rmax) 

define the range of surplus requests, and  

η ∊[1,0] is a threshold for taking the currently 

available surplus. Specifically, a ZI trader i con-

structs its bid as follows:

1. Assess its valuation vi(t) at the time of mar-

ket entry t, using an estimate r̂t  of the end- 

time fundamental rT. The estimate is simply 

an adjustment of the current fundamental 

rt, accounting for mean reversion:

r̂t = (1 – (1 – κ)T–t)r + (1 – κ)T–trt

2. Determine its requested surplus s, by draw-

ing uniformly from the interval [Rmin, Rmax].

3. If the surplus available at the current price 

quote is at least ηs, then submit an offer at 

the quoted price. Otherwise submit a limit 

order requesting surplus s. For instance, if 

the agent is buying, its bid price is given by:

  ASKt
  if ASKt ≤ vi(t) – ηs

 { vi(t) – s  otherwise

Note that a trader with η = 0 accepts any profit-

able quote, and one with η = 1 bids the same, 

regardless of the current quote.
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For example, consider a trader with valua-

tion v applying a ZI strategy with parameters 

Rmin = 0, Rmax = 1000, and η = 0.6. On entering 

the market, it first flips a coin to decide whether 

to buy or sell. Supposing the coin flip dictates 

BUY, it then draws a random surplus request 

s ~ U[0,1000], which for example yields s = 700. 

It therefore aims to buy at a price 700 below its 

valuation. If it can buy right now at a price of 

700η = 420 less than v (that is, if ASK ≤ v – 420), 

however, it submits a price at the current mar-

ket value. Otherwise, it submits a buy order 

with price v – 700.
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