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Over the course of one year, we systematically observed instruction in nearly all large gateway STEM courses 

at the University of California, Irvine to assess the prevalence of promising instructional practices and their 

implications for student success. More than half of the courses included promising instructional practices. 

Our most conservative student fixed- effects models suggest that students earn slightly higher grades in 

courses where instructors use explicit epistemological instruction, frequent assessment, and interactive in-

struction. Although we find no evidence to suggest that these strategies have lasting effects for the average 

UC Irvine student, we do find they have unique positive effects on the achievement of first- generation college 

students. 
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Global labor markets increasingly demand 

professionals with sophisticated skills in sci-

ence, technology, engineering, and mathemat-

ics (STEM) (Lansiquot et al. 2011; Vergara et al. 

2009). However, too few U.S. college graduates 

have these in- demand skills (Goldin and Katz 

2009; Levy and Murnane 2012). Instruction in 

undergraduate STEM courses may be partly to 

blame, as many are organized into large lec-

tures in which expert teachers transmit knowl-

edge with minimal student interaction; it is 

argued that this course design contributes to 

attrition from STEM majors during the first un-

dergraduate years (Baillie and Fitzgerald 2010; 

Kyle 1997; McGinn and Roth 1999; Mervis 2010; 

NAE 2005). In this study, we investigate the ef-

fectiveness of several instructional practices 

that have been proposed to reform large intro-

ductory STEM courses. Our study consists of 

one year of detailed observations of the in-

structional practices in forty sections of eight 

large introductory STEM courses at the Univer-

sity of California, Irvine (UCI). By linking these 

observations to administrative records of 

nearly five thousand undergraduates enrolled 

in these courses, we examine whether instruc-

tional practices identified as “promising” by 

leading national organizations influence stu-

dents’ course grades, odds of enrolling in the 

next STEM course, and their grades in the sub-
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sequent course (Nielsen 2011). Our analyses 

provide a preliminary look at the relationship 

between widely implemented promising in-

structional practices and student outcomes us-

ing a student- level cross- course fixed- effects 

design to control for time- variant observable 

student characteristics as well as time- invariant 

student characteristics. We find that students 

earn slightly higher grades in courses that use 

promising instructional practices. However, we 

find no evidence that promising instructional 

practices have longer- term achievement effects 

across the entire student population, with the 

exception of first- generation college students, 

who may derive some post- class benefits from 

exposure to promising instructional practices.

We draw on reports from the National Acad-

emy of Sciences (NAS) and the National Re-

search Council (NRC) in which promising prac-

tices were identified from a review of the 

research in undergraduate STEM education 

(Hake 1998; NAE 2005; Nielsen 2011; Wolter et 

al. 2011). We focus on three of the practices that 

figure prominently in the NAS/NRC recom-

mendations: explicit instruction in epistemol-

ogy or “thinking like a scientist,” formative and 

summative assessment, and group- based or 

interactive learning. Although these instruc-

tional practices have a strong theoretical basis 

and intuitive appeal, findings about the effec-

tiveness of these practices remain unclear. In 

particular, much of the research supporting 

promising instructional practices comes from 

evaluations of highly motivated and trained in-

structors in low- enrollment course settings or 

larger, discipline- specific studies (NAE 2005; 

Nielsen 2011). To address this gap, we system-

atically observe instruction across a variety of 

STEM disciplines and link these observations 

to student- level administrative data. Taking ad-

vantage of the instructional variation that we 

observe across these courses, we estimate the 

relation between exposure to instructional 

methods and grades in observed STEM 

courses, enrollment in subsequent courses to-

ward STEM degrees, and grades in subsequent 

STEM courses. By focusing analysis on stu-

dents who are exposed to multiple instruc-

tional styles across different classes and ob-

serving the extent to which this within- student 

variation is associated with variation in sub-

sequent persistence and success in STEM 

courses, our approach makes it possible to sep-

arate the effects of these instructional prac-

tices from potentially confounding student 

characteristics.

backgrounD

Demand for employees in STEM is projected 

to outpace demand for employees in other oc-

cupations (NSB 2010). However, the number of 

STEM graduates from U.S. higher education is 

not keeping pace (Felder, Felder, and Dietz 

1998; NSB 2010). Furthermore, STEM employ-

ers report that too many recent graduates are 

poorly prepared for the problem- solving tasks 

required in real- world applications (NAE 2005; 

Vergara et al. 2009).

Efforts to reform undergraduate STEM edu-

cation highlight the first two years of under-

graduate education as a critical period (Tinto 

2006; Upcraft, Gardner, and Barefoot 2005). 

During these early years, many American un-

dergraduates are enrolled in large lecture 

courses. Although these courses provide an ef-

ficient mechanism for disciplinary experts to 

communicate information, they may fail to 

provide adequate scaffolding for students to 

engage, learn, and experience success. Given 

this, many argue that traditionally organized, 

large lecture courses are ineffective settings for 

facilitating the skill development required for 

persistence in STEM majors (Mervis 2010). 

Many colleges and universities have begun to 

promote more active and engaged learning in 

the interest of improving scientific under-

standing and retention in STEM disciplines.

Several studies estimate associations be-

tween instructional practices and student out-

comes, including motivation and course satis-

faction, test performance, content retention 

and recall, and mastery of conceptual reason-

ing and problem- solving skills (Colliver 2000; 

Newman 2005; Chaplin 2009; Knight and Wood 

2005; Michael 2006; Dougherty et al. 1995; Gij-

bels et al. 2005; Strobel and van Barneveld 

2009, 43; Antepohl and Herzig 1999; Crouch 

and Mazur 2001; Deslauriers, Schelew, and 

Wieman 2011; Dochy et al. 2003; Lansiquot et 

al. 2011). This literature provides broad guide-

lines for instruction based primarily on small- 

scale evaluations of promising instructional 
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practices on specific student outcomes such as 

problem- solving abilities (Singer, Nielsen, and 

Schweingruber 2012; Deslauriers, Schelew, and 

Wieman 2011). For example, one experimental 

study, in which students were randomly as-

signed either to instructors trained to facilitate 

student interaction or to one of the control 

course sections, indicates that interaction im-

proves students’ attendance, engagement, and 

conceptual knowledge (Deslauriers, Schelew, 

and Wieman 2011, 862).1 Although these results 

are encouraging and typical of other disci-

plines, the research literature is fragmented 

with little evidence assessing the extent to 

which practices effective in one discipline set-

ting (such as physics) can successfully transfer 

to other disciplinary settings (Singer, Nielsen, 

and Schweingruber 2012).

Extant studies of promising instructional 

practices in introductory STEM courses com-

monly feature instructors with extensive peda-

gogical training and interest, showcased in 

courses with relatively small enrollments and 

rich instructional resources (Han and Finkel-

stein 2013). A meta- analysis of 225 studies 

found that active learning increases student 

performance in science, engineering, and 

mathematics. Student performance included 

examinations and concept inventories (N = 158 

studies) and odds of failing the course (N = 67 

studies) (Freeman et al. 2014). Although this 

meta- analysis provides no data on the size of 

the study courses or the degree of instructional 

training, it notes that results are stronger when 

class size is under fifty and that instructors in 

these studies volunteered to incorporate active 

learning pedagogies. These studies suggest 

that altered instructional practices in introduc-

tory STEM courses can substantially improve 

student outcomes, but they provide only lim-

ited information on how efficient these prac-

tices are when implemented at scale in more 

typical learning environments (such as lecture 

halls of two hundred or more) at a research 

university.

Furthermore, the existing literature pro-

vides limited information regarding the effects 

of promising instructional practices on stu-

dents who are particularly at risk for attrition 

from STEM fields, including students who are 

the first in their families to attend college (Da-

vis 2012; Nunez and Cuccaro- Alamin 1998). 

Only 20 percent of students from underrepre-

sented groups who aspire to a STEM degree 

successfully graduate with one within five 

years; first- generation college students have 

lower undergraduate grade point averages 

(GPAs) and are less likely to persist in STEM 

than students of college- educated parents 

(Hurtado, Eagen, and Chang 2010; Vuong, 

Brown- Welty, and Tracz 2010; Ishitani 2006; 

Aspelmeier et al. 2012; Chen 2005; DeFreitas 

and Rinn 2013; Martinez et al. 2009). The first 

two years are crucial in narrowing the gap for 

these at- risk students; instructional practices 

may play a role (Chen 2005).

We evaluate three broad categories of prom-

ising instructional strategies implemented at 

scale in large lecture courses: teaching episte-

mology explicitly and coherently; using forma-

tive and summative assessments; and group- 

based or interactive learning. This work builds 

on a related study analyzing undergraduate 

survey data from the eight large University of 

California campuses, which found that cul-

tures of engagement varied by major into two 

categories related to the purpose of the degree 

for upper division students (Brint, Cantwell, 

and Hanneman 2008). Our study uses data 

from course observations and syllabi to cap-

ture the extent to which instructors in lower 

division STEM courses implement these prom-

ising instructional practices and the impact 

they may have on student achievement.

The NAS identified “teaching epistemology 

explicitly and coherently” as a promising prac-

tice for undergraduate STEM instruction 

(Nielsen 2011, 24). We define epistemology as 

understanding the concepts, separating fact 

from opinion, and critically analyzing con-

cepts (Goldman 1986). For example, instructors 

might teach epistemology by modeling 

problem- solving techniques during lecture and 

guiding analysis of concepts—sometimes re-

ferred to as “thinking aloud.” In other cases, 

they might teach epistemology by describing 

1. In the experimental section, 211 of 271 students attended the day of the test, versus 171 of 267 for the control 

section. All students were offered extra credit for their time.
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a key concept’s intellectual history and its rel-

evance to their research or to the field more 

broadly (DeLuca and Lari 2013; Pace and Mid-

dendorf 2004). Explicit coherent teaching in-

cludes systematically rearranging course con-

tent according to students’ epistemological 

awareness and metacognition and strategically 

addressing science misconceptions prevalent 

among undergraduates (Grant 2008). To illus-

trate, instructors can intentionally refer to 

prior course content and big ideas, provide re-

inforcement through exam content, and con-

nect content with everyday experience, helping 

students reframe understanding.

The NAS report advocates use of structured 

evaluations to improve undergraduate STEM in-

struction “using formative assessment tech-

niques and feedback loops to change practice” 

as well as “developing learning objectives and 

aligning assessments with those objectives” 

(Nielsen 2011, 24). Formative assessments offer 

immediate feedback to both student and in-

structor. This feedback allows instructors to 

modify their teaching based on current student 

understanding and allows students to modify 

their study strategies (Black 2013; Harlen and 

James 1997). Formative assessment occurs when 

instructors check for students’ understanding 

(via clicker questions and in- class exercises) and 

modify the lecture accordingly (Han and Fin-

kelstein 2013). Instances of effective summative 

assessment include repeated use of graded ex-

ams, quizzes, and homework (Black 2013; Har-

len and James 1997). These allow the instructor 

to ensure that learning objectives and assess-

ments are properly aligned. Summative assess-

ments also provide feedback so that students 

can modify their study strategies.

Interactive lectures provide opportunities 

for students to interact with peers and instruc-

tors (Singer, Nielsen, and Schweingruber 2012). 

Promising practices designed to improve inter-

action in lectures include: “allowing students 

to ‘do’ science, such as learning in labs and 

problem solving,” “providing structured group 

learning experiences,” and “promoting active, 

engaged learning” (Nielsen 2011, 24). Student- 

centered approaches create opportunities for 

students to collaborate over a single problem, 

or for more extended periods in a “flipped for-

mat” (Garcia, Gasiewski, and Hurtado 2011; 

Stage and Kinzie 2009). In addition to instruc-

tional reform, course structure reform—such 

as the addition of a lab section—provides 

added opportunity for collaboration (Nasr and 

Ramadan 2008; Farrior et al. 2007; Khousmi 

and Hadjou 2005).

methoD

Our study uses systematic observations of in-

structional practice in large introductory STEM 

lecture courses from the Schools of Biological 

and Physical Sciences at UCI during the Spring 

2013, Fall 2013, and Winter 2014 quarters. UCI 

is a highly selective institution and these 

schools are among the fastest- growing units 

on campus. Together, they enroll 55 percent of 

UCI undergraduates and 95 percent of UCI un-

dergraduates in STEM fields. Enrollment for 

these schools has increased by 20 percent be-

tween 2003 and 2012. Over the same period, 

UCI’s student population has undergone sub-

stantial demographic changes. Currently, 55 

percent of UCI students are first- generation 

college students and 30 percent are members 

of underrepresented minority groups (UC Ir-

vine Office of Institutional Research 2013).

Although more than 95 percent of UCI un-

dergraduates earn a bachelor’s of arts (BA) 

within six years, many students who begin as 

STEM majors transfer to other disciplines. Af-

ter six years, fewer than half of incoming fresh-

men in the School of Physical Sciences earn a 

baccalaureate degree from that school, while 

retention rates of majors in Biological Sciences 

hover at approximately 60 percent (UC Irvine 

Office of Institutional Research 2013). In an ef-

fort to improve STEM persistence, both schools 

are undertaking instructional reforms. How-

ever, considerable instructional variation ex-

ists at UCI both across courses and even across 

sections of the same course. Course instruc-

tors have considerable discretion over their 

pedagogical methods. In many cases, lectur-

ers—a category of instructors that includes ad-

juncts as well as teaching professors with se-

curity of employment—are leaders in the 

adoption of promising instructional practices.

By linking data from our observations of in-

struction in large gateway lecture courses with 

student- level administrative data, we take ad-

vantage of variation in instruction across sec-
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tions of the same course to conduct a nonex-

perimental, population- based evaluation of 

the extent to which promising instructional 

practices promote positive student outcomes 

during the first two years.

Sample and Procedure

We observed instruction in forty introductory 

STEM courses at UCI. Our study identified all 

courses in the School of Biological Sciences 

and Physical Sciences that were prerequisites 

for other mandatory courses in one or more 

STEM major, were offered in multiple sections 

during the course of the year, and enrolled two 

hundred or more students. Eight courses met 

these criteria: Biological Sciences, From DNA 

to Organisms (BioSci 93), General Chemistry 

(Chem 1A, 1B, and 1C), Organic Chemistry 

(Chem 51A and Chem 51B), Single- Variate Cal-

culus (Math 2A), and Classical Physics (Phys 

7C).2 It is useful to note that the courses in our 

sample play somewhat different roles on cam-

pus. Introductory Biology (BioSci 93) is the first 

of several mandatory courses for the Biology 

major. Similarly, the general chemistry series 

and organic chemistry courses are required for 

several STEM majors. By contrast, a lower pro-

portion of students are required to take the 

next course in the sequence for Mathematics 

2A and Physics 7C. During the year of the study, 

the university offered forty- two sections of 

these courses; forty sections participated in 

the study. Trained research assistants observed 

one course session in the first three weeks and 

one course session in the last three weeks of 

regular instruction. An overview of the course 

sample is presented in table 1.

For each observation, research assistants 

videotape lectures and collect data on instruc-

tional strategies using a researcher- developed 

observation protocol known as Simple Proto-

col for Observing Undergraduate Teaching 

(SPROUT).3 Observations include detailed field 

notes during the lecture that are subsequently 

transferred to the observation protocol and 

contain both dichotomous indicators and 

qualitative evidence. Two researchers over-

lapped on 20 percent of the course sessions 

with inter- rater reliability of Cohen’s kappa = 

0.80. Coding disagreements and ambiguities 

were discussed among the research team as 

they occurred during the data collection pro-

cess. Course materials such as syllabi and key 

handouts are also collected to identify content 

related to epistemology, assessment, and in-

teraction.

Student administrative data was collected 

from the Office of Institutional Research (OIR). 

Our sample is diverse—58 percent are first- 

generation college students, 26 percent are 

members of underrepresented minority 

groups, and 56 percent are female. In addition 

to demographic and academic data, OIR pro-

vides course enrollments and grades (both in 

observed courses and in courses that students 

take in subsequent terms), allowing us to track 

student progress toward STEM degrees. The 

sample consists of UCI freshmen and sopho-

mores attending one or more focal (that is, ob-

served) courses. As few transfer students enroll 

in these introductory courses, they are ex-

cluded from analysis. The total sample in-

cludes 4,801 students. Students can enroll in 

more than one of the observed courses; thus a 

single student can provide more than one case 

and the analysis file includes 11,803 distinct ob-

servations.

Measures

The present study considers the relation be-

tween instruction and three measures of stu-

dent success: student grades in the observed 

course (measured on a four- point scale, where 

an A is 4.0 and an F is 0.0), student odds of 

enrolling in subsequent courses toward STEM 

degrees, and student grades in subsequent 

2. Organic Chemistry is a three- course sequence. However, no specific course follows the third course in the 

sequence and so we included only the first two courses in our analyses, using the third only in our measures of 

course progression and subsequent course grades.

3. SPROUT adapted content from three well- known observation protocols: U- Teach Observation Protocol,  or 

UTOP (Walkington et al. 2012); the Reformed Teaching Observation Protocol, or RTOP (Sawada et al. 2002); 

and Teaching Dimensions Observation Protocol, or TDOP (Hora and Ferrare 2014). SPROUT is available online 

at http://www.projectsprout.education.uci.edu (accessed February 23, 2016).
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STEM courses.4 Course syllabi indicate that 

grades in these classes were not curved to the 

mean, but rather on a straight point scale (Car-

rell and West 2008). Each of the observed 

courses serves as a prerequisite for another 

course in the same field. For example, students 

are required to successfully complete BioSci 93 

to enroll in BioSci 94. Our subsequent enroll-

ment outcome is a dichotomous measure of 

whether the student completed the subse-

quent course during the next academic term.5 

Our third outcome is the student’s grade in 

that subsequent course, conditional on enroll-

ment in the subsequent course and measured 

on a four- point scale.

We create composites for three instruc-

tional variables of interest: epistemology, as-

sessment, and interaction. Items from ob-

served lectures at both time points are summed 

to create a course composite measure. In these 

analyses, we assume that instructional prac-

tices are consistent across sections taught by 

the same instructor.6 Correlation tables for the 

variables between the first and second obser-

Table 1. Description of Full Sample

Variable

Total

Observations

Total 

Students

Mean/

Percent

Standard 

Deviation Minimum Maximum

Epistemologya 11,803 4,801 0.00 1.00 –1.62 1.70

Assessmenta 11,803 4,801 0.08 0.96 –1.00 2.60

Interactiona 11,803 4,801 0.06 0.99 –1.07 2.36

Math SATa 11,494 4,610 0.00 1.00 –3.77 2.16

Verbal SATa 11,494 4,610 0.00 1.00 –3.49 2.72

High school GPAa 11,786 4,789 0.00 1.00 –5.50 2.39

Focal course AP 11,803 4,801 0.30 0.46 0.00 1.00

Male 11,791 4,792 0.42 0.49 0.00 1.00

Black 11,791 4,792 0.02 0.12 0.00 1.00

Hispanic 11,791 4,792 0.21 0.41 0.00 1.00

Nonresident 11,791 4,792 0.09 0.29 0.00 1.00

White 11,791 4,792 0.12 0.32 0.00 1.00

Other 11,803 4,801 0.03 0.18 0.00 1.00

Low-income status 11,791 4,792 0.40 0.49 0.00 1.00

First-generation college 11,791 4,792 0.55 0.50 0.00 1.00

Focal course in major 11,803 4,801 0.63 0.48 0.00 1.00

Full-time student 11,803 4,801 1.00 0.07 0.00 1.00

Freshman 11,791 4,792 0.96 0.19 0.00 1.00

Repeating course 11,803 4,801 0.02 0.13 0.00 1.00

Source: Author’s calculations.

Note: Observations are repeated cases of students because students are enrolled in one or more ob-

served courses.
aDenotes scores are standardized. Asians were used as the reference group, as the university is 

considered a minority majority university (nearly 50 percent Asian). All others are dummy variables. 

4. Although many studies on instructional practices use concept inventories or examinations, these were not 

available in this observational cross- disciplinary study.

5. The full sample was used to analyze whether students completed the subsequent course; the student fixed 

effects sample was used to analyze grade in observed and subsequent course.

6. We tested this assumption by observing multiple course sections taught by three instructors. These observa-

tions returned a high degree to consistency within instructors across classes, with observations of instructional 

practices correlating at the 0.93 level across sections.

r s f :  t h e  r u s s e l l  s a g e  f o u n d at i o n  j o u r n a l  o f  t h e  s o c i a l  s c i e n c e s



21 8 h i g h e r  e d u c a t i o n  e f f e c t i v e n e s s

vation are included in appendix C. Because of 

the limited number of observed courses, a con-

firmatory factor analysis on the measurement 

model was not possible. As a result, we con-

ceptualize our measures as indices or compos-

ites rather than as latent variables. The three 

measures capture the degree to which instruc-

tors engage in each of the three broad catego-

ries of instructional practices rather than indi-

cators of how well instructors implement these 

practices (instructional quality).

The epistemology scale measures the extent 

to which instructors taught epistemology ex-

plicitly and coherently. We use five items from 

SPROUT to assess whether the instructor: 

models problem- solving techniques; makes 

connections between the course material and 

everyday student experience; refers to what 

students learned in prior course content; ex-

plicitly refers to themes, major theories, or 

other “big ideas” in the course; and refers ex-

plicitly to content on an upcoming exam. 

Summed across time points, epistemology 

practices range from 3 to 8 with a mean of 5.76 

and standard deviation of 1.84 (alpha = 0.54). 

The correlation of the measure across both 

time points is 0.33. While some instructors en-

gage in these activities relatively consistently 

across the instructional quarter, others refer to 

prior course content more in the beginning 

and “big ideas” at the end.

To measure assessment practices within the 

course, we use four items from SPROUT and 

four items from coded course syllabi. Assess-

ment items include whether students take a 

quiz during study observations; whether in-

structor measures student understanding; 

whether instructor modifies lecture content as 

a result of measuring student understanding; 

number of clicker questions during the ob-

served lectures; whether course has online 

homework; whether course has traditional 

homework; number of weekly quizzes; and 

number of exams. Across both time points, as-

sessment practices range from 3 to 23 with a 

mean of 7.46 and a standard deviation of 5.28 

(alpha = 0.70). The correlation of observed as-

sessment practices across both time points is 

0.69.

To measure instructional practices related 

to interaction, we use four items from SPROUT 

and one item from the coded syllabi. These 

include whether the lecture is interactive in-

clusive of student- peer or student- instructor 

exchanges; whether the instructor asks stu-

dents to work in groups; whether work is con-

ducted during the lecture; whether the course 

uses a flipped format; and whether a labora-

tory section is associated with the lecture. 

Across both time points, group- based or inter-

active practices range from 0 to 6 with a mean 

of 1.70 and standard deviation of 1.57 (alpha = 

0.61). The correlation of group- based or inter-

active practices observed across both time 

points is 0.74.

To ease interpretation, we standardize the 

instructional variables and create z- scores. Be-

cause alphas of the constructs were relatively 

low, we estimate additional models using the 

individual items which constitute each of the 

scales. We note the results of these models 

when they are significantly different from zero 

in appendix B.

Where appropriate, analyses use demo-

graphic data collected from OIR, including 

gender (male or female), ethnicity (Asian 

American, African American, Hispanic, white, 

and other), first generation to attend college, 

and income status. Student academic charac-

teristics are measured using weighted high 

school grade point average, mathematics and 

verbal SAT scores, and whether or not students 

took an advanced placement exam correspond-

ing with the observed course. To ease interpre-

tation, we standardize all continuous variables 

and create z- scores.

analyses

The first analytic step involves descriptive in-

vestigation regarding the extent to which in-

struction and student outcomes vary across 

course sections. Observable student character-

istics are associated with student exposure to 

three broad instructional variables, which may 

be a concern for interpreting the relation be-

tween exposure to instruction and academic 

outcomes.

After considering the student factors that 

predict exposure to promising instructional 

practices, we consider the relation between 

these practices and student achievement. We 

conduct a series of logistic and ordinary least 
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squares regressions of the following basic 

form:

(1) Yi =  β0 + β1Instruction + β2Covariatesi  

+ ∑β3Course + ∑β4T + ε

where Yi is the outcome of interest (odds of 

taking next course in STEM sequence). Instruc-

tion is the composite score for the specific in-

structional practice. Covariates represents a 

vector of student- level controls described 

above, including college enrollment year, 

transfer status, high school grade point aver-

age, SAT scores, gender, first generation to at-

tend college, low income status, whether or 

not the student is repeating the course, and 

ethnicity. Course includes a matrix of course- 

title fixed effects designed to control for as-

pects of content, instruction, and student be-

havior that do not vary across sections of the 

same course.

We use a student fixed- effects model to 

more reliably identify the causal effects of in-

struction on grade in observed and subsequent 

course. This includes a high school fixed- effect 

term controlling for characteristics of high 

schools attended before matriculation at UCI. 

It may be that students from the same high 

school have similar preparation or prior knowl-

edge that affects their performance, and to the 

extent that students from the same high school 

enroll together in the same sections of 

introductory- level courses, and that high 

school characteristics could confound analysis 

of instructional practices. These analyses take 

advantage of the fact that many students are 

enrolled in multiple courses that we observe. 

For example, typical first- year biology majors 

at UCI might enroll in as many as four ob-

served courses (introductory biology, general 

chemistry, organic chemistry, and calculus). 

Repeated observations make it possible to ac-

count for observed and unobserved student 

characteristics and behaviors that are constant 

within a student, and thus more reliably esti-

mate the extent to which exposure to promis-

ing instructional practices influences student 

academic behavior in that course and the sub-

sequent course, net of observed and unob-

served student characteristics (for analyses us-

ing a very similar design in public high school 

settings, see Clotfelter, Ladd, and Vigdor 2007; 

Xu, Hannaway, and Taylor 2011). These models 

take the following general form:

(2) Yij =  β0 + β1Instructioni + ∑β2Coursei  + 

∑β3Covariates + ∑β4Studenti + ε

In this equation, Yij is the outcome of inter-

est: student grades in focal course j and stu-

dent grades in which focal course j is a prereq-

uisite. Student in this model is a matrix of 

student fixed effects, controlling for all char-

acteristics of students that are fixed across 

courses, including observable characteristics 

such as student race, gender, and economic 

and academic background, as well as invariant 

student characteristics such as intelligence 

and motivation.7 The parameter of interest in 

this model, Instruction, therefore estimates the 

extent to which exposure to a given instruction 

technique in a given course influences a stu-

dent’s achievement in that course (along with 

subsequent course) when compared with other 

observed courses also taken by that student.

Model 2 provides more internally valid esti-

mates of the causal effects of exposure to in-

struction than model 1. To be included in the 

student fixed- effects model, students must 

take at least three observed courses, which en-

sures that students take courses in more than 

one discipline. For example, rather than just 

Chem 1A and Chem 1B, a student taking three 

or more courses might also take BioSci 93. 

Nearly half of the students meet this criterion 

and thus contribute to the student fixed- effects 

analyses. Although the students in the fixed- 

effects sample do not differ significantly from 

students in the whole sample on demographic 

characteristics, they do score higher on several 

measures of prior achievement and include 

more STEM majors than the full sample. Table 

7. Because student characteristics such as race and family background do not vary across course observations, 

model 2 excludes many of the student- level controls that our multivariate models include. However, the model 

includes controls for student characteristics that do vary across courses, including indicators of whether students 

completed AP courses relevant to the focal course and whether they are repeating the course.
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1 provides descriptive statistics for the full 

sample and table 2 provides descriptive statis-

tics for the student fixed- effects sample.8 It is 

possible that the student fixed- effects model 

does not fully address the selection issues, be-

cause students may be more or less highly mo-

tivated by specific classes. However, by isolat-

ing instructional effects for individual students, 

it is the best approach to reliably identify the 

causal effects of instruction on observed and 

subsequent course.

In supplementary analyses, we add a series 

of instruction*first- generation student interac-

tion terms to our student fixed- effects models. 

These interactions estimate the extent to which 

the association between instruction and stu-

dent outcomes is different for students who 

are the first in their families to enroll in college 

compared with their peers who have more ex-

tensive exposure to higher education settings.

results

We include descriptive data on courses and in-

structional practices, followed by associations 

between these practices and student out-

comes.

Instructional Variation  

Across and Within Courses

Table 3 provides a description of sample size 

by course, along with percent of students in 

each course who progress to the next course. 

Table 2. Student Fixed-Effects Sample: Students in Three or More Observed Courses

Variable Observations Students

Mean/

Percent

Standard 

Deviation Minimum Maximum

Epistemologya 8,303 2,382 –0.01 1.00 –1.62 1.70

Assessmenta 8,303 2,382 0.12 0.98 –1.00 2.60

Interactiona 8,303 2,382 0.07 1.03 –1.07 2.36

Math SATa 8,216 2,353 0.02 0.96 –3.29 2.16

Verbal SATa 8,216 2,353 0.05 0.97 –3.38 2.72

High school GPAa 8,297 2,379 0.10 0.90 –4.59 2.14

Focal course AP 8,303 2,382 0.32 0.46 0.00 1.00

Male 8,297 2,379 0.42 0.49 0.00 1.00

Gender unknown 8,297 2,379 0.00 0.05 0.00 1.00

Black 8,297 2,379 0.02 0.12 0.00 1.00

Hispanic 8,297 2,379 0.20 0.40 0.00 1.00

Nonresident 8,297 2,379 0.08 0.26 0.00 1.00

White 8,297 2,379 0.12 0.32 0.00 1.00

Other 8,303 2,382 0.03 0.18 0.00 1.00

Low-income status 8,297 2,379 0.41 0.49 0.00 1.00

First-generation college 8,297 2,379 0.55 0.50 0.00 1.00

Focal course in major 8,303 2,382 0.71 0.45 0.00 1.00

Full-time student 8,303 2,382 1.00 0.06 0.00 1.00

Freshman 8,297 2,379 0.99 0.12 0.00 1.00

Repeating course 8,303 2,382 0.02 0.14 0.00 1.00

Source: Author’s calculations.
aDenotes scores are standardized. Asians were used as the reference group because the university is 

considered a minority majority university (nearly 50 percent Asian). All others are dummy variables. In 

the Mean/Percent column, decimals for dummy variables show the percentage of students in that 

category. 

8. All models use the Huber- White estimator to correct for clustering at the course section level.
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Because these courses are effectively a program 

gateway, administrators and instructors meet 

regularly to discuss course syllabi, instruc-

tional materials, and content. These conversa-

tions limit instructor freedom to define course 

content, but instructors have considerable au-

tonomy over instructional strategies.

Table 4 provides descriptive data for three 

instructional measures (epistemology, assess-

ment, and interaction). Observed instruction 

varies in important ways across disciplines and 

courses. Because all biology and physics course 

sections use clickers, courses in these fields 

rate higher than courses in other disciplines 

on the assessment scale. Biology has the high-

est mean on the interaction index, whereas 

Chem 51A and Chem 1C generate the highest 

means on the epistemology scale. Chem 1B 

and Math 2A yield the lowest means for all 

three instructional measures.

Most instructional practices also vary sub-

stantially across sections within the same 

course. Although BioSci 93 course sections in-

volve more interactive instruction on average 

than other courses, we observe considerable 

variation in the prevalence of interactive in-

struction among the six BioSci 93 sections. In-

deed, the standard deviation for the interactive 

instruction among BioSci 93 students (1.41) is 

larger than that for interactive instruction in 

the overall sample (1.00). This variation across 

course sections is important for our identifica-

tion strategy given that we include course fixed 

effects. Less variation is evident in the use of 

formative and summative assessments across 

course sections relative to the variation across 

course sections in interactive instruction and 

explicit instruction about epistemology. In-

deed, for Chem 1C we observe no variation in 

the use of assessment across course sections. 

Such within- course homogeneity makes it par-

ticularly difficult to identify the effects of as-

sessment on student outcomes.

Student Selection into  

Instructional Environments

Because we cannot randomly assign students 

to classes, values in table 5 show the extent to 

which observable student characteristics pre-

dict instructional strategies used in the class-

room. These analyses include controls for 

course titles, which explain between 50 percent 

and 80 percent of the observed variation in in-

structional exposure.9

Exposure to explicit epistemological in-

struction and assessment do not seem to vary 

Table 3. Students Enrolled in Focal Course and Subsequent Course

Number of 

Course 

Sections

Number of 

Instructors

Number of 

Students

Enrolled in 

Subsequent 

Course

Number of 

Students with 

Subsequent 

Course Grade

Biological Sciences 93 6 6 1,931 72.14% 1,393

Chemistry 1A 7 5 2,488 67.73% 1,685

Chemistry 1B 5 4 1,765 72.69% 1,283

Chemistry 1C 4 2 1,377 72.11% 993

Chemistry 51A 4 4 1,186 75.21% 892

Chemistry 51B 3 3 847 80.40% 681

Mathematics 2A 7 5 1,253 49.48% 620

Physics 7C 4 4 956 43.62% 417

Total 40 31 11,803 67.48% 7,964

Source: Author’s calculations.

9. Supplementary models using observable student characteristics to predict exposure to three instructional 

strategies (excluding course title controls) explain only 2 to 3 percent of the variance, but return similar relation-

ships between student characteristics and instructional exposure.
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substantially with observable student charac-

teristics. However, we find that men, Hispanic 

students, nonresident international students, 

and students retaking a course (after failing it) 

are exposed to more interactive instruction 

than peers, conditional on other observable 

characteristics. Students’ SAT math scores are 

negatively associated with exposure to interac-

tive instruction after controlling for other stu-

dent characteristics. This suggests that some 

at- risk students and students who previously 

failed tend to choose courses with relatively 

high levels of interactive instruction.

Associations Between Instruction and 

Student Outcomes

Figure 1 shows student rates of progression to 

the next course in the sequence after control-

ling for student characteristics. BioSci 93 has 

more than 85 percent of students successfully 

progressing to the next course in the program 

sequence, despite the fact that instructional 

practices vary considerably across biology sec-

tions. By contrast, we observe considerable 

variation in progression rates for students in 

Chem 1A and 1B (general chemistry) as well as 

Math 2A. In Math 2A, for example, we observe 

Table 4. Instructional Variation Across and Within Courses

Mean

Standard 

Deviation Minimum Maximum

Epistemology scale

Biological Sciences 93 –0.78 0.31 –1.06 0.04

Chemistry 1A 0.53 1.03 –1.62 1.15

Chemistry 1B –0.71 0.39 –1.06 0.60

Chemistry 1C 0.84 0.27 0.60 1.15

Chemistry 51A 1.02 0.77 0.04 1.70

Chemistry 51B –0.08 1.36 –1.62 1.70

Mathematics 2A –0.60 0.82 –1.62 0.60

Physics 7C –0.11 0.25 –0.51 0.04

Assessment scale

Biological Sciences 93 1.41 0.82 0.62 2.60

Chemistry 1A 0.30 0.64 –0.82 0.80

Chemistry 1B –0.61 0.15 –0.64 0.08

Chemistry 1C –0.64 0.00 –0.64 –0.64

Chemistry 51A –0.68 0.25 –1.00 –0.46

Chemistry 51B –0.68 0.14 –0.82 –0.46

Mathematics 2A –0.33 0.44 –1.00 0.26

Physics 7C 1.31 0.54 0.98 2.60

Interaction scale

Biological Sciences 93 0.88 1.43 –0.50 2.36

Chemistry 1A 0.51 0.83 –1.07 1.22

Chemistry 1B –0.88 0.32 –1.07 0.74

Chemistry 1C –0.57 0.57 –1.07 0.74

Chemistry 51A 0.15 0.53 –0.50 0.64

Chemistry 51B –0.14 0.28 –0.50 0.07

Mathematics 2A –0.34 0.43 –0.45 0.19

Physics 7C 0.42 0.74 –1.07 1.22

Source: Author’s calculations.
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Table 5. Selection by Observables with Course Fixed Effects

Epistemology 

b/se

Assessment 

b/se

Interaction 

b/se 

Male 0.002 0.018 0.038*

(0.015) (0.010) (0.016)

Gender unknown 0.152 –0.008 0.124

(0.115) (0.112) (0.153)

Standardized SAT math –0.001 –0.009 –0.024*

(0.009) (0.006) (0.010)

Standardized SAT verbal 0.009 0.009 0.012

(0.008) (0.005) (0.009)

Standardized high school GPA –0.004 0.001 –0.009

(0.008) (0.006) (0.004)

Whether AP in focal course –0.017 0.013 –0.024

(0.015) (0.011) (0.017)

Black 0.019 –0.064 –0.111

(0.060) (0.042) (0.066)

Hispanic 0.028 0.032* 0.058**

(0.019) (0.013) (0.021)

Non-resident 0.061* 0.036 0.053

(0.028) (0.019) (0.029)

White –0.006 –0.018 –0.016

(0.023) (0.016) (0.027)

Other ethnicity 0.026 0.011 0.004

(0.037) (0.025) (0.041)

Whether focal course was a major requirement 0.036* –0.008 –0.037*

(0.015) (0.011) (0.017)

Whether student was fulltime –0.065 –0.103 0.056

(0.095) (0.080) (0.130)

Whether student was freshman –0.159* –0.044 0.021

(0.070) (0.046) (0.075)

Whether student repeated the course –0.020 –0.049* 0.487***

(0.051) (0.023) (0.031)

Whether student was low-income status 0.047** 0.007 0.004

(0.016) (0.011) (0.018)

Whether student was first to attend college –0.031 –0.028* –0.040*

(0.016) (0.011) (0.018)

Constant –0.585*** 1.552*** 0.823***

(0.115) (0.094) (0.151)

N 11,493 11,493 11,493

R2 0.462 0.726 0.375

Source: Author’s calculations. 

Note: Asians were used as the reference group, as the university is considered a minority majority uni-

versity (nearly 50% Asian). 

*p < .05; **p < .01; ***p < .001
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several course sections in which fewer than 

half of students progress to the next course in 

the sequence, as well as sections in which ap-

proximately 70 percent of the students prog-

ress to the next course in the sequence. How-

ever, many STEM majors are not required to 

take the subsequent course, Math 2B.

Figure 2 depicts the average grade earned 

in the subsequent course for those students 

who successfully progress, conditional on stu-

dent characteristics. Grades prove to be rela-

tively consistent in biology regardless of in-

structional practices for each section. This is 

not surprising as biology faculty standardized 

their grading. However, grades in chemistry 

and mathematics have larger standard devia-

tions. Table 6 presents a series of analyses re-

gressing student outcomes on instructional 

practices using the student fixed- effects sam-

ple (2,382 unique students; 4,762 observations). 

For external validity, we include analyses of the 

full sample in appendix C (4,801 students; 

11,803 observations).

Grades in the observed course

The first panel considers the link between in-

structional practices and student grades in the 

observed course. Whereas the first two models 

indicate no significant link between epistemol-

ogy or interaction and student grades, the 

third model (including all controls) suggests 

that students achieve higher grades in courses 

higher on epistemology (0.024, p < 0.05). In 

particular, subsequent analyses (see appendix 

B) of the five items comprising the epistemol-

ogy scale point to positive effects on course 

grades for drawing connections to the real 

world (0.034, p < 0.01) and highlighting the “big 

picture” (0.073, p < 0.05). However, problem 

solving has a negative effect on observed 

course grade (–0.072, p < 0.05). The third model 

also suggests that students achieve higher 

grades in courses with increased interaction 

(0.031, p < 0.01). Of the five items making up 

this scale, subsequent analyses show that lec-

tures inclusive of student- peer or student- 

instructor exchanges point to positive effects 

on course grades (0.067, p < 0.001). All three 

models suggest a similar positive effect on 

grades for courses that use more assessments 

(0.048, p < 0.01). In particular, subsequent anal-

yses of the eight items this scale comprises 

point to a strong relation between the use of 

whole- class checks for understanding and 
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Figure 1. Probability of Taking Next Course in Series
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grades (0.085, p < 0.01), such as a clicker ques-

tion or asking all students to respond by rais-

ing their hands. Grade in current course may 

be problematic, however, because there may 

be a relationship between instructional prac-

tices and instructor grading policies.

Course Progression

To consider the relation between instructional 

practices and student odds of progressing to 

the next course in the STEM sequence, we used 

the full sample (see appendix A). Because the 

outcome for this analysis is dichotomous (in 
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Figure 2. Average Student Grade in Subsequent Course

Table 6. Effects of Instruction on Student Grades in Observed and Subsequent Course

Bivariate

+ Student Level 

Controls

+ High School 

Fixed Effects

Outcome: grade in observed course

Epistemology 0.019 0.017 0.024*

(0.011) (0.011) (0.012)

Assessment 0.036* 0.040* 0.048**

(0.016) (0.016) (0.018)

Interaction 0.014 0.017 0.031**

(0.011) (0.010) (0.012)

N 4,762 4,744 4,744

Outcome: grade in subsequent course

Epistemology –0.017 –0.017 –0.011

(0.011) (0.011) (0.013)

Assessment 0.007 0.010 0.017

(0.018) (0.018) (0.020)

Interaction 0.006 0.011 0.020

(0.012) (0.012) (0.013)

N 4,762 4,744 4,744

Source: Authors’ calculations.

Note: Standard errors in parentheses. N represents all observations for 2,382 unique students.

*p < .05; **p < .01; ***p < .001
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which students who enroll in the next course 

in the instructional sequence take a value of 1 

and students who do not take a value of 0), we 

observe little variation among students who 

enroll at UCI from the same high school and 

even less variation applies to a single student. 

Therefore, we are unable to estimate high 

school or student fixed- effects models consid-

ering the link between instruction and student 

progression. However, the multivariate models 

reported in appendix A indicate that students 

who enroll in courses with frequent assess-

ment and high levels of interactive instruction 

are significantly less likely to progress to the 

next course in the STEM sequence compared 

with peers in courses with lower values of these 

promising instructional practices. However, 

subsequent analyses point to a strong positive 

relation between problem solving and odds of 

progressing to the next course (0.182, p < 0.01) 

(see appendix B).

Grades in Subsequent Course

Perhaps the most powerful indicator of the ex-

tent to which instruction influences students’ 

acquisition and retention is the association be-

tween instruction and grades in subsequent 

courses. These relations are presented in the 

second panel of table 6. The results from the 

third model indicate no relation between the 

three promising instructional practices and 

student achievement in subsequent courses. 

Supplemental analyses point to a positive as-

sociation between problem solving in the cur-

rent course and grade in the subsequent course 

(0.097, p < 0.01). Although suggestive, the mul-

tiple comparisons problem applies to these 

supplemental analyses, in which we test the 

effects of twelve instructional variables.

Table 7 provides some evidence to suggest 

that these instructional practices have differ-

ential effects for an important student sub-

group—first- generation college students. We 

include an interaction term to allow the asso-

ciation between instruction and subsequent 

student achievement to vary between first- 

generation college students and peers with 

college- educated parents. We find that first- 

generation students experience significantly 

higher gains in subsequent course grades than 

their counterparts when exposed to frequent 

assessment (0.065, p < 0.01) and interactive in-

struction (0.057, p < 0.01), but not explicit in-

struction in epistemology.

Discussion

This study aims to evaluate the effects of three 

widely agreed- upon promising practices—ex-

plicit instruction in epistemology or “thinking 

like a scientist,” formative and summative as-

sessment, and group- based or interactive 

learning—as implemented at scale in large un-

dergraduate introductory STEM courses 

(Nielsen 2011, 24). Small- scale studies and 

discipline- specific studies suggest these strate-

gies have potential for improving student out-

comes (Hake 1998; NAE 2005; Nielsen 2011; 

Wolter et al. 2011). However, in the current 

study, which investigates these practices in 

large undergraduate STEM courses typical of 

major research universities, we find little evi-

dence to suggest that promising instructional 

practices improve student outcomes for the av-

erage UCI student. UCI is a single example and 

not generalizable to all undergraduate STEM 

universities. Yet the university is fairly typical 

of at least one important segment of the Amer-

ican higher education system—the large re-

search university. Close examination of prom-

ising instructional strategies at this large, 

decentralized institution is capable of provid-

ing new insights regarding promising instruc-

tional strategies implemented at scale.

Table 7. Effects of Instruction on First-Generation 

College Student and Grade in Subsequent 

Course

Epistemology*First Generation Status 0.002

(0.018)

Assessment*First Generation Status 0.065**

(0.024)

Interaction*First Generation Status 0.057**

(0.021)

N 4,744

Source: Authors’ calculations.

Note: Standard errors in parentheses. N repre-

sents all observations for 2,382 unique students.

*p < .05; **p < .01; ***p < .001
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We use variation across sections of the same 

course to illustrate the effects of promising in-

structional practices on student grades in their 

current course, course progression, and subse-

quent grades. Our findings suggest that the re-

lation between instructional practices and stu-

dent outcomes is weak. Regardless of the extent 

to which instructors use promising instruc-

tional practices, student outcomes are fairly 

similar across course sections. Our most con-

servative student fixed- effects models suggest 

that students earn slightly higher grades in 

courses where instructors use explicit episte-

mological instruction, frequent assessment, 

and group- based or interactive learning. How-

ever, we find no evidence to suggest that these 

strategies have an effect on grades in subse-

quent courses for the average student. Further-

more, we find some evidence to suggest that 

first- generation college students benefit 

uniquely from exposure to frequent assessment 

and highly interactive instructional strategies.

Our findings also provide insights into the 

relation between instructional practices and 

students’ odds of progressing to subsequent 

courses in the STEM sequence. Although we 

are unable to estimate fixed- effects models on 

course progress, our multivariate models indi-

cate that students exposed to frequent assess-

ment and group- based or interactive learning 

are less likely to progress to the next course in 

the series than their peers in more traditional 

lecture classes. This finding raises important 

questions regarding the implications of prom-

ising instructional practices, implemented at 

scale, for improving student persistence in 

STEM fields. Future analyses should address 

the consequences of instructional practices for 

student persistence more extensively. Our find-

ings—that the same instructional practices 

that predict high grades in a given course do 

not predict enrollment and success in subse-

quent courses—somewhat parallel Carrell and 

West’s findings (2008). This study, which ran-

domly assigned students to core courses at the 

U.S. Air Force Academy, finds that students 

who performed well in their initial mathemat-

ics course performed significantly worse in the 

mandatory subsequent courses in math, sci-

ence, and engineering. Furthermore, they find 

that teacher effects are quite different between 

current and subsequent courses. Although stu-

dents get lower grades, on average, in courses 

with high- ranking, highly educated tenured in-

structors, these same instructor characteristics 

positively predict student performance in sub-

sequent courses.

However, two important caveats apply to 

these general findings. First, we find some 

 evidence that two of the promising practices—

exposure to formative and summative assess-

ment and group- based or interactive instruc-

tional strategies—do benefit first- generation 

college students. These practices have a posi-

tive impact on grade in the next course in the 

STEM series. Given that first- generation stu-

dents disproportionately drop out of STEM, 

this finding can be valuable for mitigating this 

attrition rate. Because we found no evidence 

that promising practices have a negative impact 

on the general population but a positive one for 

first- generation students, this may be an im-

portant consideration in their adaptation.

Second, our observational data focus on the 

extent to which instructors use particular strat-

egies and not how well they implement thems. 

We suspect that this distinction is crucial. At 

UCI and in many other higher education set-

tings, instructors have a great deal of profes-

sional autonomy, receive little pedagogical 

training, and have few signals regarding the 

effectiveness of their instruction and few in-

centives to invest considerable time and en-

ergy to teaching. After observing each of this 

study’s courses, we conducted brief, informal 

interviews with each of the instructors we ob-

served. We learned that many dedicated in-

structors refrain from implementing the sorts 

of promising practices that we highlight in this 

paper, choosing to stick instead with tried and 

true instructional techniques. Meanwhile, 

other instructors struggle to implement highly 

touted “promising practices” in an effective 

manner. We believe that future research and 

instructional reform efforts should devote at-

tention to the processes through which in-

structors encounter and adopt promising in-

structional practices. In particular, we hope 

that the sorts of observational data our project 

has collected can help instructors reflect on 

their practices and learn from one another.

Third, UCI is a selective institution. At the 
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time of this study, to enroll in introductory 

chemistry, biology, and mathematics courses, 

UCI students must either score above 600 on 

the mathematics portion of the SAT or com-

plete a rigorous set of developmental math 

courses. Although our sample of UCI introduc-

tory STEM students is ethnically and econom-

ically diverse, these students are likely to be 

more motivated and academically engaged 

than their countparts nationwide. These char-

acteristics may blunt the relation between in-

struction and student learning, insofar as UCI 

students’ study skills and motivation can com-

pensate for courses with ineffective instruc-

tion. If true, it is possible that promising in-

structional practices have a larger impact 

among heterogeneous students enrolled in 

STEM courses at community colleges and 

other less selective colleges and universities, 

especially given that these colleges typically in-

clude more first- generation students who were 

found to benefit from the practices we ob-

served (Wolter et al. 2011). Future research 

needs to address the effects of these promising 

practices at scale in heterogeneous settings, 

such as community colleges.

aPPenDix a

Analyses of Full Sample

Table A1. Effects of Instruction for Full Sample

Bivariate 

+ Student  

Level Controls

+ High School 

Fixed Effects

Student Fixed 

Effects

Outcome: grade in observed course

Epistemology –0.006 –0.003 0.010 0.024*

(0.014) (0.013) (0.012) (0.011)

Assessment –0.023 –0.018 –0.013 0.048** 

(0.02) (0.017) (0.018) (0.017)

Interaction –0.055*** –0.030** –0.016 0.031** 

(0.013) (0.011) (0.011) (0.011)

N 11,348 11,347 11,346 4,744

Outcome: odds of progressing to next course

Epistemology –0.037 –0.046 — —

(0.028) (0.029)

Assessment –0.168*** –0.171*** — —

(0.041) (0.042)

Interaction –0.113*** –0.092*** — —

(0.026) (0.027)

N 11,803 11,493 — —

Outcome: grade in subsequent course

Epistemology –0.042** –0.046*** –0.038** –0.011

(0.015) (0.013) (0.014) (0.012)

Assessment –0.016 –0.012 –0.006 0.017

(0.021) (0.019) (0.021) (0.020)

Interaction –0.050*** –0.017 –0.001 0.020

(0.013) (0.012) (0.013) (0.013)

N 7,905 7,762 7,761 4,744

Source: Authors’ calculations. 

Note: Student fixed effects include only students who took three or more of the observed courses. Stan-

dard errors in parentheses. 

*p < .05; **p < .01; ***p < .001
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aPPenDix b

Results of Analyses of Individual Scale Items

Table B1. Effects of Statistically Significant Individual Items for Three Instructional Scales

Student

Fixed-Effects

Sample

Grade in observed course

Epistemology

Problem solving –0.072*

(0.021)

Real world examples 0.034** 

(0.013)

Big picture/ideas 0.073***

(0.021)

Assessment

Checking for understanding 0.085***

(0.019)

Interaction

Interactive lecture 0.067***

(0.015)

Grade in subsequent course

Epistemology

Problem solving 0.097**

(0.031)

N 4,744

Source: Author’s calculations.

Note: The items listed are individual components of the composite scales that were statisti-

cally significant. N represents all observations for 2,382 unique students.Standard errors in 

parentheses. 

*p < .05; **p < .01; ***p < .001

Table B2. Effects of Statistically Significant Individual Items for Three Instructional Scales

Bivariate 

+ Student Level  

Controls

Outcome: Odds of progressing to next course

Epistemology

Problem solving 0.302*** 0.182**

(0.066) (0.068)

N 11,494 11,493

Source: Author’s calculations.

Note: The items listed are individual components of the composite scales that were statistically signifi-

cant. Student fixed effects sample does not have enough variation to estimate odds of progressing. 

Standard errors in parentheses. 

*p < .05; **p < .01; ***p < .001
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Table C2. Correlation Matrix for Assessment Scale

 

Assess-

ment1

Assess-

ment2

Check 

Under-

standing1

Check 

Under-

standing2

Modify 

Lesson1

Modify 

Lesson2

Number 

Click  

Ques

1

Number 

Click  

Ques

2

Assessment1 1.00

Assessment2 0.00 1.00

Check understanding1 0.18 0.40 1.00

Check understanding2 0.12 0.42 0.46 1.00

Modify lesson1 –0.05 0.13 0.62 0.36 1.00

Modify lesson2 0.19 0.28 0.38 0.72 0.28 1.00

Number click ques1 0.17 0.17 0.58 0.27 0.41 0.26 1.00

Number click ques2 0.05 0.51 0.63 0.67 0.37 0.67 0.57 1.00

Source: Authors’ calculations. 

Note: Assessments, such as quizzes, were rarely observed.

Table C3. Correlation Matrix for Interaction Scale

 

Group 

1

Group 

2

Interactive 

1

Interactive 

2

Desk Work

1

Desk Work

2

Group1 1.00

Group2 0.54 1.00

Interactive1 0.09 0.26 1.00

Interactive2 0.03 0.20 0.27 1.00

Desk work1 0.30 0.27 0.29 0.37 1.00

Desk work2 -0.07 -0.06 0.12 0.14 0.38 1.00

Source: Authors’ calculations. 

Note: The interactive variable is on a scale of 0 to 3, thus one would imagine variation in the interaction 

between pre and post.

aPPenDix c

Correlations of Pre- and Post- Scale Items

Table C1. Correlation Matrix for Epistemology Scale

Problem 

Solving1

Problem 

Solving2

Real 

World1

Real 

World2

Prior 

Course1

Prior 

Course2

Big 

Picture1

Big 

Picture2

Test

1

Test

2

Problem solving1 1.00

Problem solving2 0.51 1.00

Real world1 –0.34 –0.32 1.00

Real world2 –0.34 –0.28 0.67 1.00

Prior course1 –0.06 –0.26 0.00 –0.03 1.00

Prior course2 –0.04 0.36 0.15 0.09 –0.06 1.00

Big picture1 0.06 0.11 0.03 0.06 0.33 0.01 1.00

Big picture2 –0.05 0.21 0.04 0.12 –0.05 0.09 0.18 1.00

Test1 0.04 0.27 0.07 0.06 0.03 0.20 0.21 0.14 1.00

Test2 0.11 0.22 0.13 0.05 0.05 0.05 0.07 0.40 0.47 1.00

Source: Authors’ calculations. 

Note: Instructors seem to mention prior course content at the beginning of the term and big picture/

ideas at the end of the term.
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