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APPENDIX A: TWO-HYPOTHESIS COMPETITION: SIMPLE AND VARIABILITY HYPOTHESES 

This material is supplemental to §3.2 of the main text.  

The posterior probability evaluation metric that the hypothesis ℎ is the correct one, given the data, 𝑑, is 

calculated using Bayes’s theorem: 

𝑝(ℎ|𝑑) =  𝑝(𝑑|ℎ)𝑝(ℎ)𝑝(𝑑)                                                                                                                                         (A1) 
Under the word-independence assumption, the probability of the set 𝑑 given ℎ and 𝑦 (where ℎ = GUJARATI*, 

PENULT, or GUJARATI, and 𝑑 is the set of stressed words, with 𝑦 being the underlying unstressed forms) can 

be expanded as the product of the probability of each member of 𝑑 given ℎ and each member of 𝑦.  

𝑝(ℎ|𝑑) =  𝑝(ℎ)∏ 𝑝𝑖 (𝑑𝑖|ℎ, 𝑦𝑖)𝑝(𝑑)                                                                                                                           (A2) 
Since one is typically interested only in the relative value of the posterior probability, the ratio of posteriors 

for any two hypotheses can be taken to determine the winner. Thus, 𝑝(𝑑) can be ignored since it appears on 

both sides of the ratio, giving 

  𝑝(ℎ𝑖|𝑑)𝑝(ℎ𝑗|𝑑) =  𝑝(ℎ𝑖)∏ 𝑝(𝑑𝑥|ℎ𝑖, 𝑦𝑥)𝑥𝑝(ℎ𝑗)∏ 𝑝(𝑑𝑥|ℎ𝑗, 𝑦𝑥)𝑥 .                                                                                                                 (A3) 
For a given three-syllable word, 𝑦𝑥, there are three stress possibilities: 1: initial stress, 2: penultimate stress, 

and 3: final stress. The set of possible outputs is given by 𝐶 = {1, 2, 3}, and the stress class assigned by 𝐻𝑖 is 

written as a function of the input word: 𝐻𝑖(𝑦𝑥) ∈ 𝐶. For the original simple hypothesis space, each hypothesis 

predicts exactly one stress position per word—that is, assigns all probability to one position. Thus, the prob-

ability of stress being in any given position 𝑐 is either 0 or 1. 

𝑝(𝑐|𝐻𝑖, 𝑦𝑥) =  {1     𝑐 = 𝐻𝑖(𝑦𝑥)0     otherwise                                                                                                                          (A4) 
The variability versions of the simple hypotheses assign some small probability to other stress positions. 

From a production standpoint, the process can be conceptualized as follows. Stress placement is decided 

either via rule or at random. The probability that the rule will be used is high. However, the random process 
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will be chosen instead from time to time. This random process (A, for ‘arbitrary’) will result in exceptional 

stress placement two out of every three times for three-syllable words, and will randomly select the same 

location as 𝐻 one out of every three times.  

𝑝(𝑐|A, 𝑦𝑥) = 13 , ∀𝑐                                                                                                                                                (A5) 
For the variability hypotheses, the probability of stress in any of the three possible locations 𝑐 is given as the 

weighted sum of the contributions from the two processes: 

 𝑝(𝑐|𝐻𝑖α, 𝑦𝑥) = 𝑤𝑖𝑝(𝑐|𝐻𝑖, 𝑦𝑥) + 𝑤𝑎𝑝(𝑐|𝐴, 𝑦𝑥)                                                                                               (A6) 
Take 3α (= 𝑤𝑎) to be the probability that stress will be assigned randomly (thus, each position has probability 

α of being stressed under A). This leaves 1 − 3α as the probability with which the normal stress rule is 

followed (= 𝑤𝑖). The probability of stress at each possible location is given in A7. In the first instance, the 

two processes agree in the location of stress, at 𝑐𝑖 = 𝐻𝑖(𝑦𝑥). Otherwise, the two processes disagree, and 𝐻𝑖 assigns zero probability to each of these locations, 𝑐𝑎1, 𝑐𝑎2 ≠ 𝐻𝑖(𝑦𝑥):  𝑝(𝑐𝑖|𝐻𝑖α, 𝑦𝑥) = (1 − 3α)𝑝(𝑐𝑖|𝐻𝑖, 𝑦𝑥) + (3α)𝑝(𝑐𝑖|𝐴, 𝑦𝑥) = 1 − 2α                                                          (A7) 𝑝(𝑐𝑎1|𝐻𝑖α, 𝑦𝑥) = (1 − 3α)𝑝(𝑐𝑎1|𝐻𝑖, 𝑦𝑥) + (3α)𝑝(𝑐𝑎1|𝐴, 𝑦𝑥) = α    𝑝(𝑐𝑎2|𝐻𝑖α, 𝑦𝑥) = (1 − 3α)𝑝(𝑐𝑎2|𝐻𝑖, 𝑦𝑥) + (3α)𝑝(𝑐𝑎2|𝐴, 𝑦𝑥) = α 

The three scenarios can be compactly expressed by the following formula:  𝐻𝑖α: VARIABILITY VERSION OF 𝐻𝑖    (A8) 𝑝(𝑐|𝐻𝑖α, 𝑦𝑥) = {1 − 2α 𝑐 = 𝐻𝑖(𝑦𝑥)α 𝑐 ≠ 𝐻𝑖(𝑦𝑥)  

According to the definition of the variability hypotheses in A8, the probability assigned to any particular 

surface form is given as 1 − 2α if the form is consistent with the categorical version of the given hypothesis, 

and α if the form is inconsistent. Thus, it is convenient to divide the data set 𝑑 into two subsets: (i) the set of 

stressed words that are consistent with 𝐻 (e.g. 𝑑𝑖 = 𝐺∗(𝑦𝑖): the stress that actually appears on word 𝑦𝑖 is the 

same as the stress assigned by hypothesis GUJARATI* to word 𝑦𝑖), and (ii) the set of stressed words that are 

inconsistent with 𝐻. Equation A3 can then be rewritten as   𝑝(𝑑|GUJARATI∗α) 𝑝(𝑑|GUJARATIα) = ∏ α[𝑑𝑥≠𝐺∗(𝑦𝑥)] ∏ (1 − 2α)[𝑑𝑥=𝐺∗(𝑦𝑥)]∏ α[𝑑𝑥≠𝐺(𝑦𝑥)] ∏ (1 − 2α)[𝑑𝑥=𝐺(𝑦𝑥)] .                                                                         (A9) 
If the prior probability terms are the same (𝑝(GUJARATI∗) = 𝑝(GUJARATI)), then the ratio of likelihoods in 

A9 is equivalent to the ratio of posteriors in A3. 

Derivation of equation 6: For any two hypotheses, 𝐻𝑖α, 𝐻𝑗α, the following variable parameters can be 

defined; 𝑖 = the number of data points consistent with 𝐻𝑖 AND inconsistent with 𝐻𝑗; 𝑗 = the number of data 

points consistent with 𝐻𝑗 AND inconsistent with 𝐻𝑖; 𝑛 = the number of data points consistent with both 
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hypotheses; and 𝑎 = the number of data points consistent with neither hypothesis. Assuming uniform priors, 

rewriting equation A9 in terms of these parameters gives  𝑝(𝐻𝑖α|𝑑)𝑝(𝐻𝑗α|𝑑) = α𝑎+𝑗(1 − 2α)𝑖+𝑛α𝑎+𝑖(1 − 2α)𝑗+𝑛 .                                                                                                                        (A10) 
Collecting terms, 

= α𝑗α𝑎(1 − 2α)𝑖(1 − 2α)𝑛 α𝑖α𝑎(1 − 2α)𝑗(1 − 2α)𝑛                                                                                                                            (A11) 
= α𝑗(1 − 2α)𝑖 α𝑖(1 − 2α)𝑗                                                                                                                                                    (A12) 
= (1 − 2α)𝑖−𝑗 α𝑖−𝑗                                                                                                                                                      (A13) 

In the special case where there is only one data point difference between 𝑖 and 𝑗, the competition reduces to  𝑝(𝐻𝑖α|𝑑)𝑝(𝐻𝑗α|𝑑) = (1 − 2α)α .                                                                                                                                       (A14) 
APPENDIX B: MIXTURE HYPOTHESES 

B.1. DERIVATION OF NO-DIFF HYPOTHESIS: NO-DIFF(i/j)α is defined as the hypothesis that a given 

stressed surface form is as likely to have been generated by 𝐻𝑖α as by 𝐻𝑗α. This hypothesis assigns stress by 

randomly selecting either 𝐻𝑖α or 𝐻𝑗α in production. Thus, for any particular surface form, there are two possi-

ble ways it might have been generated. Any actual utterance corresponds to a surface form and a generator 

pair. The joint probability of a particular surface form and a particular generating subgrammar is, by defini-

tion, the probability of the generator times the probability of the surface form under the generator. Thus, the 

total probability of all events resulting in a given surface form is determined by the sum of the probability of 

events in which 𝐻𝑖α was the generating grammar, and the probability of events in which 𝐻𝑗α was the genera-

ting grammar: 𝑝(c|NO-DIFF(i/j)α, 𝑦𝑥) = 𝑤𝑖𝑝(𝑐|𝐻𝑖α, 𝑦𝑥) + 𝑤𝑗𝑝(𝑐|𝐻𝑗α, 𝑦𝑥)                                                                        (B1) 
In the case of NO-DIFF(i/j)α, each subgrammar is equally likely to be the generator, and the weights are both 

set at 0.5.  

The actual probability will vary by word type, and by location in the word. Using three-syllable words, 

there are three possible stress locations, and three possible scenarios for each word: (i) 𝐻𝑖α and 𝐻𝑗α both assign 

high probability to that location; (ii) one of the two assigns high probability, and the other assigns low 

probability; or (iii) both hypotheses assign low probability.  
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Scenario i: 𝑝(𝑐𝐼|NO-DIFF(𝑖/𝑗)α) = 12 (1 − 2α) + 12 (1 − 2α) = (1 − 2α) 
 

Scenario ii: 𝑝(𝑐𝐼𝐼|NO-DIFF(𝑖/𝑗)α) = 12 (α) + 12 (1 − 2α) = 1 − α2  

 

and 𝑝(𝑐𝐼𝐼|NO-DIFF(𝑖/𝑗)α) = 12 (1 − 2α) + 12 (α) = 1 − α2  

 

Scenario iii: 𝑝(𝑐𝐼𝐼𝐼|NO-DIFF(𝑖/𝑗)α) = 12 (α) + 12 (α) = α 
 

Assessing the descriptive power of NO-DIFF(i/j)α over a particular lexicon requires determining what prob-

ability NO-DIFF(i/j)α assigns to the observed surface forms. For words that are consistent with both 𝐻𝑖 and 𝐻𝑗, NO-DIFF(i/j)α predicts the correct stress location with the highest probability (corresponding to scenario 

(i)); for words that are consistent with only one of the simple hypotheses, NO-DIFF(i/j)α assigns the inter-

mediate probability under scenario (ii); and for words that are consistent with neither simple hypothesis, NO-

DIFF(i/j)α assigns the lowest probability, calculated under scenario (iii). The formula for descriptive power 

as a function of word type is given in B2.  

NO-DIFF(i/j)α: NO DIFFERENCE HYPOTHESIS                                                                       (B2) 
𝑝(𝑐|NO-DIFF(𝑖/𝑗)α, 𝑦𝑥) = {1 − 2α 𝑐 = 𝐻𝑖(𝑦𝑥) = 𝐻𝑗(𝑦𝑥)1−α2 𝑐 = 𝐻𝑖(𝑦𝑥)  𝑋𝑂𝑅  𝑐 = 𝐻𝑗(𝑦𝑥)α 𝑐 ≠ 𝐻𝑖(𝑦𝑥) &  𝑐 ≠ 𝐻𝑗(𝑦𝑥)   

 

The competition between NO-DIFF(i/j)α and 𝑯𝒊𝛂. In Appendix A a set of parameters for a given lexicon 

was defined: 𝑖 = the number of data points consistent with 𝐻𝑖 and inconsistent with 𝐻𝑗; 𝑗 = the number of 

data points consistent with 𝐻𝑗 and inconsistent with 𝐻𝑖; 𝑛 = the number of data points consistent with both 

hypotheses; and 𝑎 = the number of data points consistent with neither hypothesis. Thus, following the format 

in A13 and A6, the ratio of descriptive power between NO-DIFF(i/j)α and 𝐻𝑖α can be written in the following 

way:  𝑝(𝑑|𝐻𝑖α)𝑝(𝑑|NO-DIFF(𝑖/𝑗)α) = α𝑗+𝑎(1 − 2α)𝑖+𝑛(1 − α2 )𝑖+𝑗 (1 − 2α)𝑛α𝑎                                                                                           (B3) 
Simplifying and collecting terms, 

= α𝑗(1 − 2α)𝑖+𝑛(12)𝑖+𝑗 (1 − α)𝑖+𝑗(1 − 2α)𝑛                                                                                                                          (B4) 
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= α𝑗(1 − 2α)𝑖(12)𝑖+𝑗 (1 − α)𝑗(1 − α)𝑖                                                                                                                                  (B5) 
= 2𝑖+𝑗 [ α1 − α]𝑗 [1 − 2α1 − α ]𝑖                                                                                                                                    (B6) 
For a simple winner-take-all decision metric, and under the assumption of a uniform prior, 𝐻𝑖α wins when 

the ratio in B6 is greater than 1. If 𝑖 is expressed as a function of 𝑗 (𝑖 = 𝑚𝑗 where 𝑚 ≥ 1), it can be determined 

how much MORE unambiguous data 𝐻𝑖 must account for than 𝐻𝑗, as a function of α. Setting B6 greater than 

1 and taking the log of both sides yields: (1 + 𝑚)𝑗log(2) + 𝑗(log α − log (1 − α)) + 𝑚𝑗(log (1 − 2α) − log (1 − α)) > 0                                 (B7) 𝑚[log(2) + log(1 − 2α) − log(1 − α)] > log(1 − α) − log α − log2                                                    (B8) 
𝑚 > log 1 − α2αlog 2(1 − 2α)(1 − α)                                                                                                                                                (B9) 

For a given α, NO-DIFF(i/j)α is rejected for values of 𝑖 greater than or equal to 𝑚(α)𝑗. See Figure B1 (also 

Fig. 1 in text). In order for stress assignment probabilities to remain well defined, α must be less than 0.5. 

When α = 1/3, all three word positions have an equal probability of being stressed. This also corresponds to 

an 𝑚 value of 1: the two hypotheses are exactly equivalent in their descriptiveness of the data, that is, equally 

bad. Each predicts stress location at chance levels. As α falls below 1/3, 𝑚 rises rapidly. For a mid-range α 

value of 1/6, 𝑖 must be almost twice 𝑗 in order for Hj
α to beat the NO-DIFF hypothesis.  

  
FIGURE B1. Ratio of unambiguous data (𝑚 = 𝑖/𝑗) as a function of α for a two-hypothesis space.  

For a given α, the NO-DIFF hypothesis is rejected for points falling above the curve.  
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B.2. DERIVATION OF MAX(i/j). The maximum likelihood mixture hypothesis, MAX(i/j)α, is formulated 

in the same way as the previously derived NO-DIFF hypothesis except that the weights are fit from the data, 

and may take on different values, with the stipulation that 𝑤𝑖 +𝑤𝑗 = 1.    𝑝(𝑐|MAX(𝑖/𝑗)α, 𝑦𝑥) = 𝑤𝑖𝑝(𝑐|𝐻𝑖α, 𝑦𝑥) + 𝑤𝑗𝑝(𝑐|𝐻𝑗α, 𝑦𝑥)                                                                            (B10)  𝑃(𝑐|𝐻𝑥α, 𝑦𝑥) remains as defined in equation A8. 

Since the weights for each of the subhypotheses are not necessarily the same, there are four unique 

scenarios to consider with respect to stress placement. The first scenario is the same as above: 𝐻𝑖α and 𝐻𝑗α 

both assign high probability to the same location; the second is the location to which 𝐻𝑖α assigns high prob-

ability, but 𝐻𝑗α assigns low; the third is the reverse scenario: 𝐻𝑗α assigns high probability, but 𝐻𝑖α assigns low. 

The fourth scenario is also as above: stress locations to which both hypotheses assign low probability.  

Scenario i: 𝑝(𝑐𝐼|MAX(𝑖 𝑗⁄ )α) = 𝑤𝑖(1 − 2α) + 𝑤𝑗(1 − 2α) = (𝑤𝑖 +𝑤𝑗)(1 − 2α) = 1 − 2α 

 

Scenario ii: 𝑝(𝑐𝐼𝐼|MAX(𝑖 𝑗⁄ )α) = 𝑤𝑖(1 − 2α) + 𝑤𝑗(α) = 𝑤𝑖 + (𝑤𝑗 − 2𝑤𝑖)α  
 

Scenario iii: 𝑝(𝑐𝐼𝐼𝐼|MAX(𝑖 𝑗⁄ )α) = 𝑤𝑖(α) + 𝑤𝑗(1 − 2α) = 𝑤𝑗 + (𝑤𝑖 − 2𝑤𝑗)α 

 

Scenario iv: 𝑝(𝑐𝐼𝑉|MAX(𝑖 𝑗⁄ )α) = 𝑤𝑖(α) + 𝑤𝑗(α) = (𝑤𝑖 +𝑤𝑗)α = α 

 

The descriptive power of MAX(i/j)α over a particular lexicon is defined as the probability MAX(i/j)α assigns 

to the observed surface forms. For words that are consistent with both 𝐻𝑖 and 𝐻𝑗, MAX(i/j)α predicts the 

correct stress location with the highest probability (corresponding to scenario (i)); for words that are cons-

istent with only one of the simple hypotheses, NO-DIFF(i/j)α assigns the two different intermediate proba-

bilities under scenario (ii) or (iii); and for words that are consistent with neither simple hypothesis, MAX(i/j)α 

assigns the lowest probability, calculated under scenario (iv). The formula for descriptive power as a function 

of word type is given in B11.  

MAX(i/j)α: MAXIMUM LIKELIHOOD HYPOTHESES           (B11) 
𝑝(𝑐|MAX(𝑖 𝑗⁄ )α, 𝑦𝑥) = {  

  1 − 2α𝑤𝑖 + (𝑤𝑗 − 2𝑤𝑖)α 𝑐 = 𝐻𝑖(𝑦𝑥) = 𝐻𝑗(𝑦𝑥)𝑐 = 𝐻𝑖(𝑦𝑥) & 𝑐 ≠ 𝐻𝑗(𝑦𝑥)𝑤𝑗 + (𝑤𝑖 − 2𝑤𝑗)αα 𝑐 = 𝐻𝑗(𝑦𝑥) & 𝑐 ≠ 𝐻𝑖(𝑦𝑥)𝑐 ≠ 𝐻𝑖(𝑦𝑥) & 𝑐 ≠ 𝐻𝑗(𝑦𝑥) 
The three parameters 𝑤𝑖, 𝑤𝑗, and α are fit from the observed data so as to maximize the likelihood of the data 

given MAX(i/j)α. As before, 𝑖 is defined as the number of data points consistent with 𝐻𝑖 and inconsistent 
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with 𝐻𝑗; 𝑗, as the number of data points consistent with 𝐻𝑗 and inconsistent with 𝐻𝑖; 𝑛, as the number of data 

points consistent with both hypotheses; and 𝑎, as the number of data points consistent with neither hypothesis.  

Using Bayes’s theorem, 𝑝(𝑑|MAX(𝑖 𝑗⁄ )α) = (1 − 2α)𝑛α𝑎 + (𝑤𝑗 − 2𝑤𝑖)α)𝑖(𝑤𝑗 + (𝑤𝑖 − 2𝑤𝑗)α)𝑗.                                          (B12) 
This probability is maximized over the data when the derivatives with respect to each free parameter are at 

zero. Define: 𝐿 ≡ (1 − 2α)𝑛α𝑎(𝑤𝑖 + (𝑤𝑗 − 2𝑤𝑖)α)𝑖(𝑤𝑗 + (𝑤𝑖 − 2𝑤𝑗)α)𝑗: 𝜕𝜕𝑤𝑖 𝑝(𝑑|MAX(𝑖 𝑗⁄ )α) = [ 𝑖(1 − 2α)𝑤𝑖 + (𝑤𝑗 − 2𝑤𝑖)α] 𝐿 + [ 𝑗α𝑤𝑗 + (𝑤𝑖 − 2𝑤𝑗)α] 𝐿 = 0                                     (B13) 𝜕𝜕𝑤𝑗 𝑝(𝑑|MAX(𝑖 𝑗⁄ )α) = [ 𝑖α𝑤𝑖 + (𝑤𝑗 − 2𝑤𝑖)α] 𝐿 + [ 𝑗(1 − 2α)𝑤𝑗 + (𝑤𝑖 − 2𝑤𝑗)α] 𝐿 = 0                                     (B14) 
Combining B13 and B14, 

[ 𝑖(1 − 2α)(𝑤𝑖 + (𝑤𝑗 − 2𝑤𝑖)α)] + [ 𝑗α(𝑤𝑗 + (𝑤𝑖 − 2𝑤𝑗)α)] = [ 𝑖α(𝑤𝑖 + (𝑤𝑗 − 2𝑤𝑖)α)] + [ 𝑗(1 − 2α)(𝑤𝑗 + (𝑤𝑖 − 2𝑤𝑗)α)]     (B15) 
[ 𝑖(1 − 3α)(𝑤𝑖 + (𝑤𝑗 − 2𝑤𝑖)α)] = [ 𝑗(1 − 3α)(𝑤𝑗 + (𝑤𝑖 − 2𝑤𝑗)α)]                                                                                        (B16) 𝑖(𝑤𝑗 + (𝑤𝑖 − 2𝑤𝑗)α) = 𝑗(𝑤𝑖 + (𝑤𝑗 − 2𝑤𝑖)α)                                                                                            (B17) 𝑖𝑤𝑖α + (1 − 2α)𝑖𝑤𝑗 = 𝑗𝑤𝑗α + (1 − 2α)𝑗𝑤𝑖                                                                                                (B18) 

With the condition 𝑤𝑖 +𝑤𝑗 = 1, the weight values can be written as: 

𝑤𝑗 = [𝑗 − 2α𝑗 − 𝑖α𝑖 − 2α𝑖 − 𝑗α]𝑤𝑖 = 1 − 𝑤𝑖                                                                                                                   (B19) 
𝑤𝑖 = 11 + 𝑗 − 2α𝑗 − 𝑖α𝑖 − 2α𝑖 − 𝑗α = 𝑖 − 2α𝑖 − 𝑗α𝑖 − 3α𝑖 − 3α𝑗 + 𝑗                                                                                              (B20) 
Using only the descriptive power metric, 𝑝(𝑑/ℎ), GUJARATI*α cannot do better than MAX(G*/G)α. The 

mixture grammar always sets its parameters so as to maximize the likelihood of the training data, and it has 

more parameters than GUJARATI*α. Therefore, the best GUJARATI*α can do is tie, when 𝑤𝑖 = 1 and 𝑤𝑗 = 0.  

APPENDIX C: OPTIMAL BAYES CLASSIFICATION 

In winner-take-all evaluation, a single hypothesis wins the competition; stress assignment is then deter-

mined solely by that hypothesis. By contrast, the OPTIMAL BAYES LEARNER determines stress assignment by 

taking a weighted sum of the predictions of all hypotheses in the original space (see e.g. Mitchell 1997). The 

weight for a given hypothesis is set to the posterior probability of the hypothesis, given the previously 
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encountered data; thus, the hypotheses are essentially ranked by how plausible they are as generators of the 

data. For a novel three-syllable word, 𝑦𝑥, each possible stress position is assigned a probability via this 

weighted sum, as in C1, where l  {1, 2, 3}. 

𝑝(𝑐𝑙 |𝑑, 𝑦𝑥) =∑𝑝(𝐻𝑠 𝑐𝑙 |𝐻𝑠, 𝑦𝑥)𝑝(𝐻𝑠|𝑑)                                                                                                           (C1) 
To see how this decision metric changes the previous results, the same exercise can be performed here as 

was done in the derivation of equation 6, but with a three-, rather than a two-, hypothesis space: {𝐻𝑖, 𝐻𝑗, 𝐻𝑘}. 𝑝(𝑐𝑙 |𝑑, 𝑦𝑥) =  𝑝(𝑐𝑙 |𝐻𝑖α, 𝑦𝑥)𝑝(𝐻𝑖α|𝑑) + 𝑝(𝑐𝑙 |𝐻𝑗α, 𝑦𝑥)𝑝(𝐻𝑗α|𝑑) + 𝑝(𝑐𝑙 |𝐻𝑘α, 𝑦𝑥)𝑝(𝐻𝑘α|𝑑)                    (C2) 
If 𝐻𝑖 has only a single data point advantage over both 𝐻𝑗 and 𝐻𝑘 (𝑖 − 𝑗 = 𝑖 − 𝑘 = 1), then equation A14 can 

be used to write  𝑝(𝐻𝑖α|𝑑)𝑝(𝐻𝑗α|𝑑) = (1 − 2α)α     and    𝑝(𝐻𝑖α|𝑑)𝑝(𝐻𝑘α|𝑑) = (1 − 2α)α .                                                                                  (C3) 
Substituting 𝑝(𝐻𝑖α|𝑑) into C2 gives 

𝑝(𝑐𝑙 |𝑑, 𝑦) =  𝑝(𝑐𝑙 |𝐻𝑖α, 𝑦𝑥) 𝑝(𝐻𝑖α|𝑑) +  𝑝(𝑐𝑙 |𝐻𝑗α, 𝑦𝑥) ( α1 − 2α)𝑝(𝐻𝑖α|𝑑)                                              (C4) + 𝑝(𝑐𝑙 |𝐻𝑘α, 𝑦𝑥) ( α1−2α)𝑝(𝐻𝑖α|𝑑). 
The area where using Optimal Bayes will make a difference to the calculation is for the following kinds 

of words: ones where 𝐻𝑗 and 𝐻𝑘 agree on stress assignment, but disagree with the dominant hypothesis 𝐻𝑖. 
An example of this type of word comes from row 3 of Table 1 in the main text (e.g. /kəʈoro/, where 𝐻𝑗α = 

GUJARATIα, and 𝐻𝑘α = PENULTα. Both assign the highest probability to the second position—the penultimate 

syllable, which also contains the highest sonority vowel). For words of this type the probability of stress in 

initial position is given as: 

𝑝(𝑐1 |𝑑, 𝑦𝑥) = (1 − 2α)𝑝(𝐻𝑖α|𝑑) + α α1 − 2α𝑝(𝐻𝑖α|𝑑) + α α1 − 2α𝑝(𝐻𝑖α|𝑑)                                        (C5) 
And the probability of stress in second position is given as: 

𝑝(𝑐2 |𝑑, 𝑦𝑥) = (α)𝑝(𝐻𝑖α|𝑑) + (1 − 2α) α1 − 2α𝑝(𝐻𝑖α|𝑑) + (1 − 2α) α1 − 2α𝑝(𝐻𝑖α|𝑑)                      (C6) 
Comparing the probability of stress in first versus second position,  

𝑝(𝑐1 |𝑑, 𝑦𝑥)𝑝(𝑐2 |𝑑, 𝑦𝑥) = (1 − 2α)𝑝(𝐻𝑖α|𝑑) + α α1 − 2α𝑝(𝐻𝑖α|𝑑) + α α1 − 2α𝑝(𝐻𝑖α|𝑑)(α)𝑝(𝐻𝑖α|𝑑) + (1 − 2α) α1 − 2α𝑝(𝐻𝑖α|𝑑) + (1 − 2α) α1 − 2α𝑝(𝐻𝑖α|𝑑)                      (C7) 
Factoring out the 𝑝(𝐻𝑖α|𝑑) term and simplifying gives 
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𝑝(𝑐1 |𝑑, 𝑦𝑥)𝑝(𝑐2 |𝑑, 𝑦𝑥) = (1 − 2α)
2(1 − 2α) + α α1 − 2α + α α1 − 2α3α .                                                                                        (C8) 

Collecting terms, 𝑝(𝑐1 |𝑑, 𝑦𝑥)𝑝(𝑐2 |𝑑, 𝑦𝑥) = (1 − 2α)2 + 2α23α(1 − 2α)                                                                                                                         (C9) 
𝑝(𝑐1 |𝑑, 𝑦𝑥)𝑝(𝑐2 |𝑑, 𝑦𝑥) = 6α2 − 4α + 13α(1 − 2α)                                                                                                                            (C10) 

The behavior of this ratio in the region where α ≤ 0.33 is plotted in Figure C1.  

In Optimal Bayes, the less dominant hypotheses can, in a sense, collude to move stress to their mutually 

preferred location. This effect will be strongest when the dominant hypothesis is only slightly better than its 

competitors (one data point), and the competitors agree on their stress prediction (e.g. penultimate position). 

Thus, the formula above illustrates the largest effect size that can be expected.  

 

FIGURE C1. Classification probability ratio: 
𝑝(𝑐1 |𝑑, 𝑦)𝑝(𝑐2 |𝑑, 𝑦) as a function of α, for the three-hypothesis case, with 𝑖 − 𝑗 =𝑖 − 𝑘 = 1. Stress in 𝑐2 position is slightly preferred over 𝑐1 for values of α ≥ 0.25 (indicated by dashed line).  

The gang-up phenomenon, in which 𝐻𝑗 and 𝐻𝑘  agree with each other in opposition to 𝐻𝑖, can be seen to 

have an appreciable effect in the region 0.25 < α < 0.33. In this region the two stress positions have roughly 

equal probabilities. However, recall that α is the probability assigned to EACH of two exceptional stress 

positions. An α of 0.25 means that there is only a 50% chance of stress being assigned by rule. For a still high 

exception rate of 25% (an α of 0.125), 𝑐1 is more than twice as likely as 𝑐2, and this discrepancy only increases 

as α decreases. Thus, it can be seen that using the Optimal Bayes Classifier has relatively little effect on the 

outcome. 
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APPENDIX D: DERIVATION OF INFORMATION-THEORETIC PRIOR 

The total description length for a string (or set of data) 𝑑 and a particular hypothesis H is given by the 

following general formula for two-part coding (Rissanen 1989). 𝐿(𝑑, 𝐻) = 𝐿(𝑑|𝐻) + 𝐿(𝐻)                                                                                                                                  (D1) 
The relation of D1 to Bayes’s theorem becomes clear when using the transformation from probability to 

optimal code length given by 𝐿(𝑥) = −log𝑝(𝑥).                                                                                                                                                 (D2) 
Intuitively, equation D2 calls for assigning shorter length codes to higher probability symbols 𝑥. On average, 

this will minimize the code length for a string, 𝑑, of symbols drawn from distribution 𝑃(𝑥). For a binary 

alphabet, the logarithm is taken to be base 2. Rewriting Bayes’s theorem in the following way, 𝑝(𝐻, 𝑑) =𝑝(𝑑|𝐻)𝑝(𝐻), taking the negative logarithm, and applying equation D1, returns equation D2.  The close rela-

tionship between the two formalisms lends itself to the mapping of prior probability to hypothesis complexity, 

or coding length: the more bits it takes to spell out a given hypothesis, the lower its prior probability (and the 

lower its explanatory power). Under this transformation, 𝐿(𝐻) corresponds to − log2 𝑝(𝐻), which means 

that 𝑝(𝐻) corresponds to 2−L(H ). 

In the absence of any hypothesis, or stress-generating rule, a certain number of bits per word will have 

to be used to indicate stress location. The coding length of the data will go up. With a hypothesis, this cost 

per word is avoided, because there is a function that can be applied to the underlying form to determine stress 

placement. The trade-off is that the hypothesis itself must be described so that the stress location can be 

computed. A cost is incurred dependent on how many bits it takes to completely specify the hypothesis. In 

what follows, the coding costs for the hypotheses GUJARATI*α and MAX(G*/G)α will be determined. Trans-

lated to prior probabilities (the explanatory power term), these values will be combined with the previously 

calculated likelihood ratio to determine the conditions under which the anti-markedness grammar defeats the 

mixture grammar using the Bayesian evaluation metric.  

To begin, consider the way in which the categorical hypothesis GUJARATI* assigns stress. The grammar 

can be conceptualized as a decision tree over underlying forms something like the one depicted in Figure 

D1.1 In order to be able to specify the correct stress for any three-syllable word, the GUJARATI* hypothesis 

must allow for at least five consecutive determinations: (1) if the word contains /ə/ in penultimate position, 

then it will assign stress to that position; if not, (2) if the word has a /ə/ in initial position, then it will assign 

stress to that position; if not, (3) if the word has /ə/ in final position, then it will assign stress to that position; 

if not, (4) if the word has a mid-sonority vowel in penultimate position, then it will assign stress to that 

position; if not, (5) if the word has a mid-sonority vowel in initial position, then it will assign stress to that 

position; if not, the word will be assigned penultimate stress (final stress is only allowed for the lowest 

sonority vowels in complementarity with the GUJARATI grammar in ex. 1 in the main text).  

The decision tree (T ) in Fig. D1 requires a minimum number of bits to describe, which can be estimated 

using the binary coding scheme given in Rissanen 1989:§7.2. 

                                                 
1 In keeping with Kiparsky’s conjecture, I have been assuming that GUJARATI* represents a true reversed-sonority hierarchy 

language. This entails that the grammar will treat the highest sonority vowels (/a/) as dispreferred stress carriers, even though the 

inventory of Gujarati′ actually contains no /a/s, and thus no evidence to the learner regarding their behavior. 
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𝐿(𝑇) = log (𝑘𝑇 +𝑚𝑇 − 2𝑘𝑇 )                                                                                                                               (D3) 
Equation D3 provides a measure of how much the grammar expressed by T compresses its input—or how 

many classes it must keep track of to produce the correct output. This is a function of 𝑘𝑇, the number of 

internal nodes of the tree, and 𝑚𝑇, the number of leaf nodes. For the GUJARATI* grammar, 𝑘𝑇  = 5 (corres-

ponding to the relevant questions about vowel identity depicted in Fig. D1), and 𝑚𝑇 = 6 (corresponding to 

the possible stress decisions resulting from the answers to each of those questions).  

 

 
FIGURE D1. GUJARATI* hypothesis represented as a decision tree based on vowel type and position. 

 

The variability version of GUJARATI* additionally requires the estimation of one parameter: α. In gen-

eral, for a hypothesis consisting of a set of 𝑞 free parameters (θ), 𝐿(𝐻) must include the cost of estimating 

those parameters, as well as the length needed to encode the precision of each parameter. Asymptotically, for 

long strings of training data (large 𝑁; 𝑑 = {𝑦𝑖 , … 𝑦𝑁}) where precision can be ignored, the optimal code 

length for the maximum likelihood estimated parameters (θ̂) approaches equation D4 (Rissanen 1989:§3.1). 

𝐿(θ̂) = 𝑞2 log𝑁                                                                                                                                                       (D4) 
Combining the length terms for the tree structure (T ) and the estimated parameters (θ̂) gives:   

𝐿(GUJARATI∗α) = log (𝑘𝑇 +𝑚𝑇 − 2𝑘𝑇 ) + 12 log𝑁 = log (95) + 12 log𝑁                                                       (D5) 
MAX(G*/G)α requires estimation of two parameters: 𝑤𝐺∗ and α (since 𝑤𝐺 = 1 − 𝑤𝐺∗, it does not have to be 

separately estimated from the data). The formulation in B10 requires grammars for both GUJARATI* and 
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GUJARATI, and a decision node connecting the two trees. The total coding length of MAX(G*/G)α is thus 

given by 

𝐿(MAX(G∗ G⁄ )α) = log (2110) + log𝑁.                                                                                                               (D6) 
Converting equations D5 and D6 via equation D2 determines the ratio of prior probabilities for 

GUJARATI*α and MAX(G*/G)α:   𝑝(GUJARATI∗α)𝑝(MAX(G∗ G⁄ )α) =  κ√𝑁,                                                                                                                                    (D7) 
where κ = 2,800. The ratio of the prior probabilities depends on the length of the string, or the total amount 

of data to be transmitted. In order to see how factoring in prior probabilities influences the outcome of learn-

ing, a particular lexicon that is to be learned will have to be specified. 

APPENDIX E: TWO-SYLLABLE WORD TYPES 

This material is supplemental to §4 of the main text. 

 

 CASE 

GUJARATI 

VOWEL-TEMPLATE 

EXAMPLE 

L > L′ 
# TYPES 

H 

1 (ə, a) [pəɡár] > [pəɡə́r] 1 

A 

2 (M, a) [ʃikár] > [ʃikə́r] 6 

G* 

3 (M, ə) [díwəs] > [díwəs] 6 

G, P 

4 (a, a) [ráɟa] > [rə́ɟə] 51 

G, G*,P (a, ə) [ɡádʒər] > [ɡə́dʒər] 
(a, M) [pʰájdo] > [pʲə́jdo] 

(ə, ə) [bə́kbək] > [bə́kbək] 

(ə, M) [mə́so] > [mə́so] 

(M, M) [lékʰe] > [lékʰe] 
 

TABLE E1. Full set of all possible two-syllable word types for stress. Final column gives number of types and 

hypotheses with which the data are consistent. G: GUJARATI, G*: GUJARATI*, P: PENULT. Forms consistent with none 

of the three hypotheses are denoted A for ‘arbitrary’. M is shorthand for any of the mid-sonority vowel class {i, e, ɛ, o, 

ɔ, u}). For two-syllable words, there are 82, or 64, types. 

 

APPENDIX F: COMPETITION BETWEEN GUJARATI*α AND MAX(G*/G)α FOR L′U 

This material is supplemental to §4 of the main text. 

Calculating the posterior probability ratio between GUJARATI*α and MAX(G*/G)α will first require set-

ting the following parameters: α for GUJARATI*α, and α, 𝑤𝐺∗, and 𝑤𝐺 for MAX(G*/G)α. By definition, the 
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second set of parameters will be set by maximum likelihood estimation. So as to give GUJARATI*α the best 

chance of winning, the same method will be used to estimate its free parameter α.  

Under L′U for three-syllable words, the proportions from Table 3 are used. To better approximate an adult-

sized lexicon, the numbers are scaled up by a factor of 13, resulting in a total lexicon size of 6,656 words. To 

simplify the calculations, a two-hypothesis competition will be used—excluding PENULT from consideration 

for the time being. This yields the following parameter values: 𝑁 = 6,656, 𝑎 = 273, 𝑖 = 1,716, 𝑗 = 1,560, 𝑛 = 

3,107, 𝐺∗ = 𝑖 + 𝑛 = 4,823. 

  

Derivation of maximum likelihood α under GUJARATI*α: From Bayes’s theorem (A1) and the 

definition of variability hypotheses in A8, the likelihood of the data under GUJARATI*α is given by  

𝑝(𝑑|GUJARATI∗α) = α𝑁−𝐺∗(1 − 2α)𝐺∗𝑝(𝑑) .                                                                                                            (F1) 
Defining 𝐿 = α𝑁−𝐺∗(1 − 2α)𝐺∗𝑝(𝑑), and taking the derivative with respect to α, gives 𝜕𝜕α𝑝(𝑑|GUJARATI∗α) = 𝑁 − 𝐺∗α 𝐿 − 2𝐺∗1 − 2α𝐿.                                                                                                 (F2) 
The value of α that maximizes the probability of the hypothesis given the observed data occurs when the 

formula in F2 is equal to zero, 𝑁 − 𝐺∗α = 2𝐺∗1 − 2α                                                                                                                                                  (F3) 𝑁 − 𝐺∗ − 2𝑁α = 0                                                                                                                                               (F4) 
α = 𝑁 − 𝐺∗2𝑁                                                                                                                                                             (F5) 

 

Derivation of maximum likelihood α under MAX(G*/G)α: The likelihood of 𝑑 under MAX(G*/G)α is 

given above in B12, and reproduced in F6. 𝑝(𝑑|MAX(G∗ G⁄ )α = (1 − 2α)𝑛α𝑎(𝑤𝐺∗ + (𝑤𝐺 − 2𝑤𝐺∗)α)𝑖(𝑤𝐺 + (𝑤𝐺∗ − 2𝑤𝐺)α)𝑗                           (F6) 
As before, in order to find the maximum likelihood estimate for α, take the partial derivative of F with respect 

to α and set it to zero. F6 is maximized, under L′U, and using the maximum likelihood formulae for 𝑤𝐺∗ and 𝑤𝐺 in B19 and B20, for an α of approximately 0.026. This is found by plotting the log likelihood in Figure 

F1. The curve reaches its maximum at the intersection of the dotted line. This point also corresponds to the 

maximum likelihood weights 𝑤𝐺∗ = 52.5% and 𝑤𝐺  = 47.5%. 
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FIGURE F1. Log(𝑝(𝑑|MAX(G∗ G⁄ )) as a function of α. This curve is maximized at the  

intersection of the dashed lines. 

 

Two-hypothesis competition: The ratio of posterior probabilities for the competing hypotheses is given 

by 𝑝(GUJARATI∗α|𝑑)𝑝(MAX(G∗ G⁄ )α|𝑑) = 𝑝(GUJARATI∗α)𝑝(MAX(G∗ G⁄ )α) 𝑝(𝑑|GUJARATI∗α)𝑝(𝑑|MAX(G∗ G⁄ )α).                                                                       (F7)
 

The likelihoods and posteriors will be very small, so logarithms are used to avoid precision loss. 

log [ 𝑝(GUJARATI∗α|𝑑)𝑝(MAX(G∗ G⁄ )α|𝑑)] = log [ 𝑝(GUJARATI∗α)𝑝(MAX(G∗ G⁄ )α)] + log [ 𝑝(𝑑|GUJARATI∗α)𝑝(𝑑|MAX(G∗ G⁄ )α)]                                     (F8) 
Plugging in the information-theoretic prior from D7 gives: 

log [ 𝑝(GUJARATI∗α|𝑑)𝑝(MAX(G∗ G⁄ )α|𝑑)] = log[2800√𝑁] + log (𝑝(𝑑|GUJARATI∗α)) − log(𝑝(𝑑|MAX(G∗ G⁄ )α))      (F9) 
For GUJARATI*α under L′U (equation F5), 

α = 𝑁 − 𝐺∗2𝑁 ≅ 0.138 

when N = 6,656 and G* = 4,823. log[𝑝(𝑑|GUJARATI∗α)] = log [(α)1813(1 − 2α)4823] ≅ −2253.1 

The log-likelihood of the data given MAX(G*/G)α can be read off of Fig. F1, giving: 
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log [ 𝑝(GUJARATI∗α|𝑑)𝑝(MAX(G∗ G⁄ )α|𝑑)] = 5.4 − 2253.1 + 1526.7 ≅ −721 

The log of the posterior ratio is much less than zero, which means that the ratio of the posteriors is much less 

than one, and MAX(G*/G)α is still the winner even with the bias toward GUJARATI*α from the information-

theoretic prior. While the description-length prior does shift the outcome of the competition by a few orders 

of magnitude (2.2  105), the discrepancy of descriptive power between the two different hypotheses is so 

large that the overall result is largely unaffected. In order to balance out the lower probability GUJARATI*α 

assigns to the data, the ratio of the priors would have to be on the order of 10726! The difference in complexity, 

or description length, between the two hypotheses, as can be seen, does not come anywhere close to this 

value.2  

Another way to think about equation F9 is in terms of competition thresholds. For the simple anti-

markedness grammar to defeat the mixed grammar hypothesis, the posterior probability ratio must be greater 

than one (and thus, the log posterior probability must be greater than zero). Under L′U this clearly does not 

occur.  

To determine the lexical conditions that are favorable to the anti-markedness grammar, the values of the 

parameters 𝑗 and 𝑖 can be varied. To simplify things, keep 𝑛, 𝑁, and 𝑎 constant—which will also keep the 

prior probability ratio constant. For the pure anti-markedness grammar to win under the Bayesian evaluation 

metric, 𝑖 must be significantly greater than 𝑗. Beginning with the numbers for L′U and systematically 

decreasing 𝑗, while increasing 𝑖 by the same amount (δ), the exact location at which the posterior probability 

crosses the zero point can be determined. This occurs at δ =1,406: 𝑖 = 3,122 and 𝑗 = 154. This is a data ratio 

of roughly 20. In order to reject a mixture hypothesis where both sonority hierarchies are maintained, 

GUJARATI* must account for about twenty times more UNAMBIGUOUS data than GUJARATI.3  

 

APPENDIX G: LEXICONS 

This material is supplemental to §5.2 of the main text. 

G.1. SAMPLING. For §5.2 a set of lexicons was created by repeatedly sampling (with replacement) from 

the full set of word types in Tables 3 and E1 at several different rates. Word type here is defined by the unique 

sequence of vowels within the word. This sampling allows for a kind of tuning of nonuniformity over 

lexicons. The lexicons are the product of the set of sampled vowel sequences that are randomly assigned 

consonants to become unique words. However, the more undersampled the space of possible vowel 

sequences is, the more nonuniform the lexicon is likely to become in sonority space. All else being equal, 

this should occur symmetrically, such that lexicons are equally likely to skew in any direction. Thus, a set of 

                                                 
2 There is at least one caveat related to the calculation of this information-theoretic prior: the value may depend on the particular 

coding scheme used. In practice, a code length exactly equal to the negative log of the probability of a particular symbol may be 

unattainable, and the relationship in equation D2 becomes an approximation that may be better in some cases than others.  Due to 

this limitation, it is not clear how much the exact magnitude of a result obtained with this method can be relied upon (for a brief 

discussion of this issue see, for example, Brent 1999). However, it can be seen that, due to the extremely large numbers involved, 

small adjustments are unlikely to significantly affect the result. 
3 An alternative to this approach is to imagine all grammars as potential mixtures, and to stipulate a prior probability distribution 

over the possible weight values. Each grammar in this view is equally complex, but certain weight combinations may be more likely 

than others (such as the ‘simple’ 0/100% distribution over weights). Conceptually, this seems at least as reasonable as the current 

approach. One is still left, however, with the problem of determining the prior probability distribution over the weights.  In order to 

assess the outcome of learning in the absence of any influence of UG, this needs to be done in a manner that is independent of the 

linguistic problem at hand. 
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1,000 such randomly generated lexicons will have a broader distribution, in any given parameter space, the 

lower the sampling rate. 

First, the total number of three-syllable and two-syllable words for each lexicon was fixed at 3,072 and 

3,840, respectively (these numbers derive from scaling terms applied to the total number of 512 unique three-

syllable word types and 64 unique two-syllable word types such that a roughly equal number of three- and 

two-syllable words result within a reasonably sized vocabulary). The probability over word types was uni-

formly distributed. For each lexicon, a certain degree of sampling was specified. This degree indicated how 

many different word types would be used in the make-up of that lexicon. In the case of undersampling, some 

word types were guaranteed to be excluded. This could also happen with full sampling and oversampling, as 

the sampling was done with replacement. Four different degrees of sampling were selected, with each 

percentage of types a factor of 10 smaller than the degree below it. Degree 1 sampled three-syllable word 

types at 600%, and two-syllable word types at 6000%. These numbers map directly to the 3,072 : 3,840 word 

lexicon. Degree 2 undersampled three-syllable word types at 60%, but still oversampled two-syllable word 

types at 600%. Degree 3 undersampled each at 6% : 60%. The final degree, degree 4, undersampled at 0.6% 

: 6%. In the case where undersampling occurred, the number of types were duplicated as necessary to produce 

the total number of required unique words. For example, the degree 3 lexicon contained at most 31 out of a 

possible 512 three-syllable word types, and 38 out of a possible 64 two-syllable word types. For the full-

sized lexicon these projected to the fixed 3,072 and 3,840 words, respectively. Thus there was considerable 

duplication in the represented types, and, correspondingly, duplication in the sonority profiles of the words 

in degree 3 lexicons. More fully sampled lexicons can be expected to demonstrate greater variety of types, 

and thus represent more fully the various sonority profiles illustrated in Tables 3 and E1.  

Although the degree of undersampling gives a measure of how skewed the type distributions can be 

expected to be for a given lexicon, it does not specify the exact nature of that distribution. For example, one 

lexicon generated with degree 4 of undersampling displays the following normalized vowel frequency dist-

ribution: a: 33%, i: 22%, e: 16%, ə: 16%, ɔ: 5%, u: 5%, ɛ: 0%, o: 0%. Identical with respect to degree of 

sampling, but very different with respect to stress distribution over words, is a lexicon with the following 

vowel frequencies (where only the vowel identities at each frequency level have changed): u: 33%, ɛ: 22%, 

i: 16%, o: 16%, ə: 5%, e: 0%, a: 0%. Which particular vowels appear with any particular frequency is det-

ermined by random selection, and differs for each of the lexicons generated.   

The method described above also does not control the WAY in which the lexicons are nonuniform, only 

the DEGREE to which they are. Although natural language lexical distributions are far from being universally 

and comprehensively characterized, it has been observed that a number of linguistic units tend to show a 

specific kind of nonuniform distribution. This distribution is one in which the highest-frequency items are 

observed (in e.g. a text sample) significantly more often than the next most frequent, and the largest number 

of different types is found at the lowest rate of occurrence. This kind of distribution has been noted for word 

and morpheme token frequencies, word lengths, and syllable counts. It has also been suggested for the 

distribution of phonetic or phonological units, in accordance with principles of articulatory markedness (Zipf 

1949). Generally speaking, a distribution in which the absolute frequency of occurrence depends on the 

relative frequency of occurrence is known as a Zipfian distribution.4 A particular instantiation of a Zipfian 

distribution (the standard harmonic) is characterized by the following formula: 𝑓 ∝ 1𝑟 ,                                                                                                                                                                       (G1) 
                                                 

4 Thanks to an anonymous referee for suggesting consideration of this type of vowel distribution. 
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which describes a dependency in which the frequency of a type ( f ) is proportional to its rank frequency (r). 

In terms of the types of interest, namely vowels, this means that the second most frequent vowel will occur 

half as often as the most frequent vowel, the third most frequent vowel will occur one third as often, and so 

on.  

Although the current sample of lexicons contains distributions that are at least as nonuniform as the 

Zipfian—for a given measure of nonuniformity—there are not necessarily any that are nonuniform in exactly 

the same way. Accordingly, a fifth set of 1,000 lexicons was generated. Each lexicon of this new set was 

Zipfian in the distribution of its vowels. Sampling occurred over vowels themselves rather than sequences of 

vowels, but random selection determined precisely which vowels corresponded to which frequency rank for 

each lexicon.  

 

G.2. HOMOPHONY-AVOIDANT SOUND CHANGE. It should be noted that the competition GUJARATI* faces 

from GUJARATI is due to the existence of a residue of natural patterns in the post-sound change language: a 

certain proportion of forms whose surface [ə]s were historically /ə/s, rather than deriving from /a/s. Consider 

the three-syllable words classified in Table 3, reproduced here as Table G1 for ease of reference. The residual 

natural pattern is contained in rows 4 and 5, whereas the decisive anti-markedness patterns are evident in 

rows 2 and 3. The difference between the rates of occurrence of these groups can be roughly characterized 

as the difference between the rates of occurrence of /a/ and /ə/ in Gujarati. If the frequency of /ə/ is appreciably 

lower than that of /a/, then the frequency of words in rows 4 and 5, all else being equal, is analogously less 

than the frequency of words in rows 2 and 3.  

The repercussions of a large difference in relative frequency between /ə/ and /a/ can be seen in Table G2. 

Here, three representative lexicons from each type of sampling are selected: one that results in a mixture 

outcome, one that results in a GUJARATI* outcome, and one that results in a GUJARATI outcome. As Table 

G2 shows, the latter two types of lexicon occur only with degree 4 and Zipfian lexicons, even for the lowest 

threshold values. However, for each of the instances that produce the GUJARATI* outcome, /a/ is considerably 

more frequent than /ə/, whereas in the mixture outcomes, the two vowels are much closer together in 

frequency.  

If lexicons in which /a/ was appreciably more frequent than /ə/ were themselves more likely to occur, 

then the random sampling assumption of the previous section would not hold, and the estimate for the 

expected numbers of GUJARATI* grammars would go up. I can think of no reason why this should be true, 

however. On the other hand, if the sound change /a > ə/ were more likely to apply to lexicons in which /a/ 

was appreciably more frequent than /ə/, then the expected GUJARATI* numbers could also go up. It is this 

scenario that is now examined. 

There is a long-standing intuition in the field that sound changes are more likely to occur if they do not 

neutralize contrasts (Martinet 1955).5 Contrast is achieved by mapping different sounds to different mean-

ings. And while this is not always a one-to-one mapping, the hypothesis is that the communicative need to 

reduce ambiguity limits the amount of homophony in any given language. One way this limit can be main-

tained is by disallowing sound changes that would increase homophony. When an inventory that contains 

both /ə/ and /a/ is reduced to one that contains only /ə/, a contrast has been removed. Words that differed 

depending on whether they contained /ə/ or /a/ are now phonologically identical. However, if the original 

                                                 
5 Thanks to Adam Albright for bringing this to my attention. 

 



s18 

inventory contained few /ə/s (low token frequency), the amount of neutralization this sound change would 

introduce is minimal. 

 CASE 

GUJARATI 

VOWEL-TEMPLATE 

EXAMPLE 

L > L′ 

# TYPES 

H 

1. (ə, ə, a) [pəkʃəpát] > [pəkʃəpə́t] 21 

A (ə, M, a) [pəɾikʃá] > [pəɾikʃə́] 

(a, ə, M) [tábəɖtob] > [tə́bəɖtob] 

(M, ə, a) [uccʰəvás] > [uccʰəvə́s] 

(a, ə, a) [ ɟáɟərman] > [ ɟə́ɟərmən] 

(a, ə, ə) [páʈnəɡər] > [pə́ʈnəɡər] 

2. (M, M, a) [hoʃijáɾ] > [hoʃijə́ɾ] 84 

G* (a, M, M) [ʃáririk] > [ʃə́ririk] 

(a, M, a) [háɖohaɖ ] > [hə́ɖohəɖ ] 

(a, M, ə) [pʰa ́ siɡər] > [pʰə ́ siɡər] 

3. (M, a, a) [durácar] > [durə́cər] 48 

G*, P (M, a, ə) [mubáɾək] > [mubə́ɾək] 

(M, a, M) [betáɭis] > [betə́ɭis] 

4. (M, M, ə) [tʃumːótəɾ] > [tʃumːótəɾ] 78 

G, P (ə, M, ə) [vəríʃʈʰə] > [vəríʃʈʰə] 

(ə, M, M) [kəʈóro] > [kəʈóro] 

5. (M, ə, M) [kójəldi] > [kójəldi] 42 

G (M, ə, ə) [kʃétrəpʰəɭ ] > [kʃétrəpʰəɭ ] 

6. (a, a, a) [awːánã] > [əwːə́nə ] 239 

G, G*, P (a, a, M) [amdáni] > [əmdə́ni] 

(ə, a, a) [resádar] > [resə́dər] 

(ə, a, ə) [səpʰácət] > [səpʰə́cət] 

(ə, a, M) [ɡʰəʈáɖo] > [ɡʰəʈə́ɖo] 

(ə, ə, ə) [əkbə́ndʰə] > [əkbə́ndʰə] 

(ə, ə, M) [cəkcə́kit] > [cəkcə́kit] 

(M, M, M) [iʈʰʈʰóter] > [iʈʰʈʰóter] 

 (a, a, ə) [ ɟʰaɡmáɡəʈ ] > [ ɟʰə́ɡmə́ɡəʈ ] 

 

TABLE G1. Full set of all possible three-syllable word types with respect to stress.  Final column gives 

number of types and hypotheses with which the data are consistent: G*: GUJARATI*, G: GUJARATI, P: 

PENULT. Forms consistent with none of the three hypotheses are denoted A for arbitrary (M is shorthand for 

any of the mid-sonority vowel class {i, e, ɛ, o, ɔ, u}). 
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GRAMMAR 

TYPE 

LEXICON 

TYPE 

ə a e ɛ i ɔ o u 
M

IX
T

U
R

E
 

1 0.12/2 0.12/2 0.12/2 0.12/2 0.12/2 0.12/2 0.12/2 0.13/1 

2 0.12/2 0.11/3 0.13/1 0.11/3 0.13/1 0.11/3 0.12/2 0.13/1 

3 0.11/5 0.09/6 0.14/2 0.12/4 0.15/1 0.13/3 0.11/5 0.13/3 

4 0.06/3 0.11/2 0.11/2 0.22/1 0.11/2 0.11/2 0.22/1 0.06/3 

z 0.07/5 0.09/4 0.05/7 0.36/1 0.12/3 0.04/8 0.18/2 0.06/6 

G
U

JA
R

A
T

I*
 1 — — — — — — — — 

2 — — — — — — — — 

3 — — — — — — — — 

4 0.16/3 0.33/1 0.16/3        0/6 0.22/2 0.05/4        0/6 0.05/4 

z 0.06/6 0.36/1 0.04/8 0.07/5 0.18/2 0.12/3 0.09/4 0.05/7 

G
U

JA
R

A
T

I 

1 — — — — — — — — 

2 — — — — — — — — 

3 — — — — — — — — 

4 0.28/1 0.11/3 0.17/2 0.17/2       0/5 0.17/2 0.06/4 0.06/4 

z 0.36/1 0.06/6 0.04/8 0.12/3 0.05/7 0.07/5 0.09/4 0.18/2 

 

TABLE G2. Normalized frequencies (rounded)/rank-order frequency. 

 

Like many of the linguistic ideas already examined, the intuition about homophony avoidance is hard to 

implement. The exact role that homophony avoidance plays in historic change is not known, nor how the 

allowable level of ambiguity should be measured, nor how to use such a measure (see Surendran & Niyogi 

2006 for a discussion of these questions). However, it seems safe to assume that a language with NO prior 

contrast between /ə/ and /a/ would be unaffected by functional pressures against neutralization. The no-

contrast language will therefore provide a benchmark as potentially the most likely language to undergo the 

sound change, as well as the language with the least residual data compatible ONLY with GUJARATI (i.e. 

none).  

For no-contrast lexicons, LNC, all data in Gujarati′ are consistent with the GUJARATI* hypothesis; 

GUJARATI* is the clear winner in a simple categorical framework. But, as argued previously, such a learner 

is incapable of coping robustly with conflicting data. Allowing for exceptions, with variability grammars 

allowed into consideration, PENULTα remains a competitor. In this scenario (seven historic vowels, rather 

than eight), all 343 types of three-syllable words are stressed consistently with the GUJARATI* hypothesis, 

while 265 are also consistent with PENULT. Two-syllable words provide somewhat less of an advantage to 

the anti-markedness grammar with only three word types that are consistent with GUJARATI* alone, at a ratio 

of 49 to 46. 

To approximate an upper bound on the probability of a pure GUJARATI* outcome, further simulations 

were run. This time only the Zipfian distribution was used, and 1,000 lexicons were generated using the 

seven-vowel inventory, for both two- and three-syllable words. Doing so resulted in a 29.5% rate for the 

reversed sonority-to-stress grammar at the lowest threshold level (1.25). In the other 70.5% of cases, 

GUJARATI* fails to exceed the minimum threshold level of descriptive advantage over PENULT, leading to a 

mixture grammar outcome. Note that this does not take into account the fact that PENULT is a simpler 

hypothesis than GUJARATI* in information-theoretic terms. The upshot being that, even with a nonneutraliz-

ing sound change, the anti-markedness outcome is not a clear and compelling winner.  
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This result cuts in the other direction as well. That is, GUJARATI faces the same competition from PENULT 

under both pre-sound change conditions, as well as natural sound change conditions (row 6 of Table 5). 

Simulations run under LNC (prior to sound change) result in a default GUJARATI grammar 28.9% of the time 

under the 1.25 proportion threshold; the mixture GUJARATI/PENULT results in the remaining 71.1% of cases. 

The outcome will be similar for the full eight-vowel inventory. Because there is such a large proportion of 

word types with penultimate stress—consistent with both hypotheses—there is typically not enough evidence 

to reject PENULT outright. As before, a GUJARATI default emerges only when GUJARATI captures signifi-

cantly more data than PENULT alone. 
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