Abstract

Let $({\bf M},g(t))$ be a K\"ahler Ricci flow with positive first Chern class. First, we prove a uniform isoperimetric inequality for all time. In the process, we also prove a Cheng-Yau type log gradient bound for positive harmonic functions on $({\bf M},g(t))$ without assuming the Ricci curvature is bounded from below.

pdf

Back To Top

This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.