Abstract

Hilbert first mentioned ideal elements in his 1898-99 lectures on geometry. He described them as important, fruitful, and of frequent occurrence in mathematics, pointing to the examples of negative, irrational, imaginary, ideal and transfinite numbers. In geometry, he had in mind the examples of points, lines, and planes at infinity, whose introduction gives geometry a certain completeness, by making theorems such as those of Pappus and Desargues universally valid.

In this article I will discuss how Hilbert transformed our view of the Pappus and Desargues theorems by showing that they express the underlying algebraic structure of projective geometry. I will compare this result with another of Hilbert's great contributions, his calculus of ends. By studying the ideal elements of the hyperbolic plane, Hilbert similarly extracted algebraic structure from the axioms of hyperbolic geometry.

Hilbert's treatments of projective and hyperbolic geometry have another important common element: construction of real numbers. To achieve this, Hilbert has to add an axiom of continuity to the geometry axioms, but he evidently wants to show that the real numbers can be put on a geometric foundation.

pdf

Additional Information

ISSN
1530-9274
Print ISSN
1063-6145
Pages
pp. 35-55
Launched on MUSE
2014-03-01
Open Access
No
Back To Top

This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.