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Abstract: Based on the well-known discrete definitions we introduce a continuous
framework for percentile rank scores and integrated impact indicators (I3). This is
done by taking the integral of a scoring function multiplied by a distribution func-
tion. Examples are provided by considering several distribution functions and two
scoring functions, where the distribution function can take any form and the scoring
function is non-decreasing.
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uous modelling

Résumé : Sur la base des définitions distinctes bien connues, nous introduisons un
cadre continu pour les notations de classement par pourcentage et les indicateurs in-
tégrés d’impact (I3). Ceci est fait en pregnant l’intégrale d’une fonction de notation
multipliée par une fonction de distribution. Des exemples sont fournis en tenant
compte de plusieurs fonctions de distribution et de deux fonctions de notation, où
la fonction de distribution peut prendre n’importe quelle forme et la fonction de
notation est non décroissante.

Mots-clés : notations de classement par pourcentage; indicateur intégré d’impact; I3;
centile; modélisation en continu

Introduction
Although researchers have realized that using arithmetic averages in sciento-
metric investigations may lead to biased results (Leydesdorff et al. 2011), it has
taken several years before an acceptable alternative was formulated. Slowly a
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consensus has arisen, leading to the use of percentiles and percentile rank classes
(Bornmann 2010; Bornmann et al. 2013; Leydesdorff and Bornmann 2011;
Leydesdorff et al. 2011; Opthof and Leydesdorff 2010; Rousseau 2012). These
notions are based on the concept of percentiles (or quantiles) for discrete data.
As most informetric models can also be described within a continuous context
(Egghe 2005), we propose a continuous analogue of the percentile approach
and, as an illustration, calculate the resulting percentile rank scores and Inte-
grated Impact Indicator (see further for definitions) for some basic functions.

Definitions
In this section, we use the framework as presented by Rousseau (2012). Con-
sider a set A and a reference set S containing all elements in A, hence A � S.
Moreover, we assume that a function X from S to the positive real numbers is
given, leading to the image multiset X(S). Note that we consider X(S) as a multi-
set, as we consider the images X(s), s in S, as separate entities (even if their values
are the same). A standard situation is the case that A consists of a set of articles,
set S consists of all articles in the journals in which set A is published (published
in the same year), and a function X which maps an article to the number of cita-
tions it has received over a given period (and there may be several articles with
the same number of citations).

Now a rule is given which subdivides set S into M disjoint classes, based on
the values of the function X. If a document belongs to class m, then it receives a
score xm. Note that this score only depends on the class (and hence on S), but
may not depend on set A (Rousseau and Ye 2012). Again a standard situation is
the case that there are 100 percentile classes (or 10 decile classes). In the case of
percentiles, articles belonging to the top 1% receive a score of 100; those belong-
ing to the top 2% (and not to the top 1%) receive a score of 99, and so on.
Besides classes of equal breadth, one may also use classes of unequal breadth
such as the six US National Science Foundation categories (National Science
Board 2010).

Definition 1. Percentile rank scores (Bornmann and Mutz 2011;
Leydesdorff et al. 2011)
Let A be a set of N documents, assume there are M classes, and let nA(m) be the
number of documents in A that belong to class m. Then the percentile rank
score of A is defined as:

R Að Þ ¼
XM
m¼1

xm
nAðmÞ
N

ð1Þ

R(A) can be seen as a weighted average of scores. Clearly, the value of R(A)
depends not only on A, but also on the reference set S, the M classes used, and
their score. We note that this indicator allows a lot of flexibility, but hence also a
lot of subjectivity, as one can adapt the reference set, the classes, and the scores.
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Definition 2. The Integrated Impact Indicator (I3)
The I3 indicator (Leydesdorff and Bornmann 2011), where I3 stands for Inte-
grated Impact Indicator, is defined in a similar way as the percentile rank score
as given in Equation (1). The role of the reference set S is the same, but this
time, no division by N is performed. Hence, using the notation introduced ear-
lier, we have the following definition.

Definition 3. The I3 score of a set A is defined as:

I3 Að Þ ¼
XM
m¼1

xmnAðmÞ ð2Þ

Clearly, I3(A) ¼ N · R(A).
In the context of journal impact, I3 is preferred to R as “having an impact”

implies publishing many articles and receiving many citations.
We generalize the step functions (in Equation (2)) to continuous functions

w(x) and k(x) defined on an interval [0,C ], C > 0. This leads to:

R ¼
ðC

0

w xð Þ � k xð Þdx ð3Þ

The function k(x) is a density function, and w(x) > 0 is a scoring function
acting as a weight for the function k(x). The origin of the interval [0,C ] corre-
sponds to the worst results—and hence the lowest scores—while the end point
C corresponds to the best results and hence the highest scores. Consequently,
w(x) is a non-decreasing (usually strictly increasing) function, while the density
function k(x) � 0 can have any form. If f (x) is a positive integrable function
on [0,C ], then we denote by N the integral

R C
0 f xð Þdx and f (x)/N becomes a

density function on [0,C ]. For any k(x) ¼ f (x)/N, R (as defined in Equation (3))
times N becomes the continuous analogue of I3, which we also denote as I3.
Hence, in a continuous setting I3 ¼ R C

0 w xð Þ � f xð Þdx, where f (x) is a positive in-
tegrable function on [0,C ].

The reason that we refer to our approach as a continuous approach is that,
besides the continuous density function k(x), we also consider a continuous ana-
logue of the discrete weight or scoring values xm.

Continuous examples: A first scoring function
We first consider the simple case that w(x) is a linearly increasing function on
the interval [0,C ]:

w xð Þ ¼ ax þ c ð4Þ
where c is a constant and a > 0 (as w is an increasing function). Choosing a
value zero at the begin point, w(0) ¼ 0, leads to c ¼ 0; hence

w xð Þ ¼ ax; a > 0 ð5Þ
Now we discuss different basic forms for the function k(x).
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Case 1. k(x) is a constant, corresponding to a uniform distribution
If f (x) ¼ K (a constant) then N ¼ K · C and k xð Þ ¼ 1

C is a density function
on [1,C ], then we obtain

R ¼
Z C

0
a � x � 1

C
dx ¼ a � C

2
ð6Þ

and

I3 ¼ R � N ¼ a � C2 � K
2

ð7Þ

Case 2. k(x) is a linear function
We consider the linear decreasing function f (x) ¼ m (C � x), with m > 0 and
f (C) ¼ 0. Note that we take a linearly decreasing function because it is assumed
here that there are many poor cases and few better ones. Normalizing yields
N ¼ R C

0 m � ðC � xÞdx ¼ m�C2

2 and hence k xð Þ ¼ 2�ðC�xÞ
C 2 is a density func-

tion on [0,C ].
Based on Equation (3) we obtain:

R ¼
Z C

0

2a � x � ðC � xÞ
C2

dx ¼ a � C
3

ð8Þ

and hence:

I3 ¼ R � N ¼ a � m � C3

6
ð9Þ

Case 3. The function k(x) is an exponential function
We consider the function f xð Þ ¼ bemx ;m 6¼ 0; b > 0. Then N ¼R C
0 b � em�xdx ¼ b

m em�C � 1ð Þ, leading to the density function k xð Þ ¼ m�em�x
em�C�1.

Then:

R ¼
Z C

0
a � x � m � em�x

em�C � 1
dx ¼ a � C � m� 1ð Þ � eC �m þ 1ð Þ

m � eC �m � 1ð Þ ð10Þ

and hence:

I3 ¼ a � b � C � m� 1ð Þ � eC �m þ 1ð Þ
m2

ð11Þ
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Case 4. The function k(x) is a decreasing power function
We consider f xð Þ ¼ 1

xþm ;m > 0. Then N ¼ R C
0

1
xþm dx ¼ ln Cþm

m

� �
, and

hence k(x) ¼ f (x)/N is a density function. This leads to:

R ¼ a
N

Z C

0

x
x þ m

dx ¼ a � C
ln Cþm

m

� �� a � m ð12Þ

and

I3 ¼ a � C � a � m � ln C þ m
m

� �
ð13Þ

Case 5. k(x) is a triangular peak function
If f (x) is a triangular peak function with peak point at (C/2, b C/2), this yields:

f xð Þ ¼
b � x; 0 � x � C

2

b � ðC � xÞ; C
2 < x � C

8<
: ð14Þ

Normalizing f (x) leads to N ¼ b2 · C/4 and the corresponding density function
k(x) ¼ f (x)/N. The integral for R consists of two parts:

R ¼ 4
b2 � C

Z C=2

0
a � b � x2dx þ 4

b2 � C
Z C

C=2
a � b � xðC � xÞdx

¼ a � C2

6b
þ a � C2

3b
¼ a � C 2

2b
ð15Þ

leading to:

I3 ¼ a � b � C 3

8
ð16Þ

Continuous examples: A second scoring function
Finally we consider a second scoring function w(x) which increases faster than a
linear function. We consider the following increasing power function
w xð Þ ¼ a � xa; a > 0; a > 1. For f (x) we take the function b � xb, with b > 0.
Then N ¼ R C

0 b � xadx ¼ b
bþ1C

bþ1. This leads to:

R ¼ 1
N

Z C

0
a � xa � b � xbdx ¼ a � ðbþ 1Þ � C a

aþ bþ 1
and I3 ¼ a � b � C aþbþ1

aþ bþ 1
ð17Þ

Conclusion
We calculated the value of I3 in a continuous framework for different distribu-
tion functions k(x) and for two scoring functions w(x) ¼ ax and w(x) ¼ a · xα.
In this way we introduced a method by which R and the I3 indicator can be
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used in a continuous modelling context. In all cases, the resulting values are
functions of the parameters introduced by the functions w(x) and k(x). One
reviewer correctly pointed out that this flexibility may lead to some additional
difficulties if one wants to use a continuous approach for modelling real data. In
such cases, w(x), k(x), and possibly C must be estimated. However, when work-
ing on this article we had an abstract theoretical framework in mind, namely one
not based on real data. By proposing this continuous approach, we hope to stim-
ulate further investigations within a continuous modelling approach to I3.
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