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of Spatial Dependence

We semiparametrically model spatial dependence via a combination of simpler weight
matrices (termed spatial basis matrices) and fit this model via maximum likelihood.
Estimation of the model relies on the intuition that bounds to the log-determinant
term in the log-likelihood can provide penalties to overfitting both the level and pat-
tern of spatml dependence. By relying on symmetric and doubly stochastic spatial
basis matrices that reflect different weight specifications assigned to neighboring ob-
servations, we are able to derive a mathematical expression for bounds on the log-de-
terminant term that appears in the likelihood function. These bounds can be
conveniently calculated allowing us to solve for maximum likelihood estimates at the
bounds using a simple optimization over two quadratic forms that involve small ma-
trices. An intuitively pleasing aspect of our approach is that the objective function for
the bounded log-likelihoods contains one quadratic form equal to the sum-of-squared
errors measuring the quality of fit, and another quadratic form reflecting a penalty to
overfitting spatial dependence. We apply our semiparametric estimation method to a
housing model using 57,647 U.S. census tracts.

The computational exigencies of spatial maximum likelihood estimation have led
researchers to concentrate on specifying spatial dependence as a function of a small
number of parameters (often just one). However, in many estimation problems the
performance displays more sensitivity to the spatial specification than to the tradi-
tional independent variable specification (Bell and Bockstael 2000). Tools to flexibly
specify spatial dependence and visually examine the impact of alternative choices
could help practitioners choose superior models.

We address this issue using an overparameterized model of spatial dependence
that assumes a monotonic decline in spatial dependence with the order of the neigh-
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boring observations. Estimation of the model relies on the intuition that bounds to
the log-determinant term in the log-likelihood can provide penalties to overfitting
both the level and pattern of spatial dependence. In our approach, the overall weight
matrix results from a convex combination of spatial basis matrices. The term spatial
basis matrices arises by way of analogy with B-splines, that employ linear combina-
tions of basis vectors to produce a vector with a flexible form [see Hiirdle (1990) for
more information on splines]. Similarly, linear combinations of spatial basis matrices
can produce a spatial weight matrix with a flexible form. Each spatial basis matrix re-
flects a different weight specification assigned to neighboring observations. The spa-
tial basis matrices used in the linear combination are symmetric and doubly stochastic
(each row and column sums to 1), resulting in an overall spatial weight matrix that is
both symmetric and doubly stochastic. Symmetric and doubly stochastic weight ma-
trices have a number of appealing properties that facilitate semiparametric modeling
of spatial dependence.

We derive a mathematical expression for bounds on the log-determinant term that
appears in the likelihood function for this symmetric doubly stochastic weight matrix.
Conveniently, the bounds can be expressed as a function of a weighted sum of the
traces of pairwise products among the spatial basis matrices. From a computational
standpoint, calculating these traces does not require forming the pairwise products
explicitly, so solving for maximum likelihood estimates at the bounds becomes a sim-
ple optimization exercise involving two quadratic forms based on small matrices (for
example, 23 by 23). An intuitively pleasing aspect of our approach is that the objective
functions (bounded log-likelihoods) contain one quadratic form equal to the sum-of-
squared errors that measures the quality of fit, and another quadratic form that re-
flects a penalty to overfitting spatial dependence. Overfitting spatial dependence can
arise from overfitting the level of spatial dependence (holding the pattern constant)
as well as fitting an overly flexible pattern of spatial dependence (holding the level of
dependence constant). Again, this bears resemblance to the type of objective func-
tions used in fitting some forms of splines in nonparametric regression.

The ability to observe semiparametric estimates of the weights given to neighbor-
ing observations at both the lower- and upper-bounded log-likelihood provides a feel
for the nature and extent of possible spatial dependence that may prove useful in es-
timation and inference, or as an exploratory tool. We label our approach the doubly
spatial model to emphasize the double bounding of the log-likelihood and the use of
doubly stochastic spatial weight matrices.

In addition to the advantages noted above, inference can be simplified as well,
while remaining in the traditional likelihood framework. Given upper- and lower-
bounded log-likelihoods for a model and any restricted submodel, one can carry out
likelihood ratio tests that take into account the range of the Jacobian term. In some
cases, one can reject or fail to reject a null hypothesis with the same validity as in
cases where the true log-likelihood is known. For example, suppose the unrestricted
lower-bound log-likelihood is —1000 and the unrestricted upper-bound log-likeli-
hood is —900. In addition, assume that imposing one restriction causes the restricted
lower-bound log-likelihood to fall to -1300 while the restricted upper-bound log-like-
lihood falls to —1200. This difference of 200 between the lower bound of the unre-
stricted log-likelihood and upper bound of the restricted log-likelihood implies that
the difference between the true unrestricted and true restricted log-likelihoods must
equal or exceed 200. Such a difference certainly exceeds the threshold required for
significance of a single hypothesis.

A notable aspect of our approach is that we can carry out inference that considers
the range of the Jacobian term in the problem, without explicit computation of the Ja-
cobian term, which greatly accelerates computation of estimates. To demonstrate



Project MUSE (2024-04-24 09:36 GMT)

[18.116.63.174]

78 / Geographical Analysis

scalability of the technique, we semiparametrically estimate the spatial dependence
for a housing model using 57,647 observations.

Section 1 develops log-determinant bounds as a function of individual basis matri-
ces and sets up the optimization problem. A small data set involving 506 observations
is analyzed in section 2 to examine our approach in a setting where true likelihood
function values are known. We show that weights based on the bounds enclose the
true weights. Section 2 also provides an application of our semiparametric estimates
to a housing model using all continental U.S. census tracts. Section 3 concludes with
the key results.

1. THE DOUBLY SPATIAL MODEL

Spatial weight matrices have a number of characteristics that affect both their sta-
tistical and numerical properties. Section 1.1 presents a doubly stochastic, symmetric
spatial weight matrix composed of primitive spatial basis matrices. This sets up the
log-determinant bounds discussed in section 1.2. In turn, the bounds lead to
bounded log-likelihoods presented in section 1.3. Section 1.4 discusses how bounded
log-likelihoods can lead to the same inferences as would arise from using the exact
log-likelihood via likelihood dominance arguments.

1.1 Spatial Weight Matrix Properties

A weight matrix specifies the dependence among n observations and thus its spec-
ification and properties greatly affect spatial model computation, estimation, as well
as inference.

DEFINITION 1. Let N N®@ N rePresent a sequence of m individual nearest
neighbor weight matrices such that N® = 1 if observation j is the k-th nearest
neighbor to observation i (i # j) and 0 otherwise (i,j = 1,...,n). Let

q{Zuﬁ%M“+Nwﬁ§W (1)
k=1

represent the gth spatial basis matrix where w\w. . w? represent the weights
given to the first, second, and up to the mth nelghbor and S ‘/> is a diagonal n by n ma-
trix that insures that B'? is doubly stochastic (that is, B9t = 1 and UB'? = " where tis
a column vector of ones). Furthermore, assume that

Define the overall spatial weight matrix B as a combination of the p primitive spatial
basis matrices:

B=a,BY +a,B? + .. +a,B? (2)

where:
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aytagt..ta,=1;

a,,ag,...,a,=0;

P

a=lay ay ... a,].

Finally, let T represent a p by p matrix containing all possible traces of pairwise mul-
tiplications of the basis matrices. Specifically, T,,, = tr(B“B®) foru,v = 1,...,p.

The diagonal elements of each spatial basis matrix B equal 0 to preclude obser-
vations from directly influencing their own predictions in the statistical model. By the
definition of a symmetric doubly stochastic matrix, BY " =t1and VBY = U, where 1 is
a column vector of ones. Since B comprises a limited number of very sparse indi-
vidual neighbor matrices, it is also sparse. Note, the weights w; used in constructing
B@W stay the same or decline in value with the order of neighbors, giving BY ) a monot-
onic character. In summary, each of the p spatial basis matrices B @ is a sparse, doubly
stochastic, symmetric, non-negative, n by n matrix with a trace equal to 0. The overall
spatial weight matrix B inherits these properties as well. See Bavaud (1998), Griffith
and Lagona (1998), Tiefelsdorf, Griffith, and Boots (1999) for recent discussions con-
cerning spatial weight matrices.

A numerical example may help clarify construction of B. Let B! represent a spatial
basis matrix with equal weight given to the four nearest neighbors.

0 02500 02500 0.2500 0.2500
02500 0 02500 0.2500 0.2500
BY =102500 02500 0  0.2500 0.2500 |.
0.2500 0.2500 02500 0  0.2500
10.2500 0.2500 0.2500 0.2500 0

Let B{?) represent a spatial basis matrix where different weights are given to the four
nearest neighbors.

0 04999 03105 0.1273 0.0623 ]
04999 0 02414 0.1394 0.1194
B? =103105 02414 0  0.1816 0.2666 .
0.1273 0.1394 0.1816 0 05517
10,0623 0.1194 0.2666 05517 0

If a,, and a,,, equal 0.5, we can define B,, = 0.5B{Y + 0.5B2.

0 0.3749 0.2803 0.1887 0.1562
0.3749 0 0.2457 0.1947 0.1847
B, =|0.2803 0.2457 0 0.2158 0.2583 |.
0.1887 0.1947 0.2158 0 0.4009
10.1562 0.1847 0.2583 0.4009 0
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Note, the individual spatial basis matrices B!V and B are doubly stochastic and sym-
metric, as is the overall example spatial welght matrlx B,,. The functions to produce
these doubly stochastic scalings as well as to estimate various spatial models reside at
WWW. spatial statistics.com or www. spatial econometrics.com.

Turning attention to the character of the welghts underlylng the spatial basis ma-
trices, Figure 1 shows a plot of the weights W= wd = . = w9 associated with

B9 ,q = 1,...,22. Each of the continuous lines in Figure 1 depicts weights for one of
the twenty—two spatial basis matrices. For example, the line extending away from 0.25
represents weights for four nearest neighbors receiving 0.25 each (similar to

V). The fifth nearest neighbor has a weight of 0 which accounts for the segment
connectmg 0.25 at neighbor 4 to 0 at neighbor 5. Some of the weights in the figure ex-
hibit a linear decline with the order of neighbor, while others take on constant values
over a range of neighbors. Obviously, a number of shapes can be produced by assign-
ing different weights to the basis matrices. In implementing the doubly spatial model,
users are, of course, free to select weights other than those employed here.

Reliance on doubly stochastic matrices is not inconsistent with the usual ap-
proaches to defining spatial weight structures because any symmetric matrix with
enough positive entries in each row and column can be transformed to doubly sto-
chastic form. This is accomplished using iterative scaling of each row and column by
a diagonal matrix containing the inverse of the square root of the row sums (which
equal the column sums). The use of too few neighbors can, however, lead to a matrix
for which no scaling will yield a doubly stochastic matrix. This might be a problem in
situations where, for example, observations are located along a major transportation
route and only one or two neighbors are used. For the case of a single neighbor, the
weight matrix is asymmetric so the techniques described here do not apply. For com-

0.4

0.35

0.3

0.25

0.2

0.15f

Weights for first through m neighbors

0.1

0.05

First through m neighbors

FIG. 1. Basis Matrix Weights
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putationally efficient solutions to single neighbor problems based on a closed-form
solution, see Pace and Zou (2000). The case of two symmetric neighbors is also un-
likely to permit doubly stochastic scaling, but problems involving a few neighbors (for
example, edge sites, roads, and peninsulas) can take advantage of sparsity using the
methods described by Pace and Barry (1997) to produce rapid log-determinant com-
putations.

We note that problems encountered with doubly stochastic scaling for small num-
bers of neighbors provided the motivation for use of the basis matrix approach de-
scribed here. The most sparse basis matrix used here contains four neighbors, but we
have been able to form doubly stochastic spatial weight matrices for typical contigu-
ity matrices constructed using Delaunay triangles. It appears that the benefits of dou-
bly stochastic scaling can be combined with the interpretive benefits associated with
the usual contiguity matrix. See Bapat and Raghavan (1997, pp. 261-63) for more on
doubly stochastic scaling algorithms.

Finally, combining different matrices to model dependence has been employed in
statistics generally and in spatial statistics specifically (for example, Streitberg 1979;
Cressie 1993, p. 94). Discontinuities and problems of ensuring positive definiteness
sometimes impede these attempts. The doubly stochastic scaling automatically en-
sures positive definiteness of (I—oB). The identical scaling of all the matrices, the
quadratic log-determinant bounds, and the use of a grid to set the overall level of de-
pendence appear to have made this easier than the general problem.

1.2 Log-Determinant Bounds

The log-determinant of the spatial weight matrix plays a key role in maximum like-
lihood spatial estimation. Here, we derive easily computable lower and upper bounds
to the log-determinant.

PROPOSITION 1. For a symmetric nonnegative matrix D with eigenvalues A, =
LA =land /A <o <1, andtr(D) =0,

max min

[o+In(l — o)]tr(D?) <In|l — oD| < —(1/ 2)o’tr(D?). (3)
PROOF. Via a Taylor series expansion:

In[[—oD| = =X tr(Di)0l/i)

and —X7_itr(DY)(0i) = —(1/2)02tr(D?), since —(1/2)o tr(D?) equals the first two
terms of the series (given ¢r(D) = 0) while tr(D') = 0 for i = 3,... .00, since D is non-
negative. Hence, In|[—oD| = —(1/2)0’r(D?) and thus the upper bound is proved.

For the lower bound, symmetry of D implies real eigenvalues A such that [A < 1| for
i = 1,..., n. Even powers have all nonnegative eigenvalues since A# = 0 for positive
integer j. Recall the trace equals the sum of the real eigenvalues, tr(D¥) = X1_ | AY
and for positive integer r,

tr(D¥*7) = Z1_ AH(L))

since the maximum value for A/ is 1 for any positive integer r and since A¥ = 0,
tr(D¥) = tr(D¥*"). In particular, tr(D?) = tr(D**"). Since tr(D) = 0, In[l—aD| =
=X tr(D)(ai/i). However, —X5_otr(D)(0//i) = —tr(D*)X5_5(0'/i). Moreover,
—Yr(0i) = (o0 —X7-, (/i) = (a0 + In(1 — o). Hence, In|I—oD| = tr(D*)((ow +
In(1 — a)) and thus the lower bound is proved. QED.
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COROLLARY 1. (00 + In(1 — a))a’Ta < In|[I—aB| = —(1/2)0%aTa.
Since ¢r(B%) = a’Ta and B meets the conditions of Proposition 1, the Corollary is
proved. QED.

In terms of implementation, tr(B"B") = ¥1_ 3 ,(B" © B") where © denotes
elementwise or Hadamard multiplication. This requires a maximum of O(2mn) opera-
tions (there is a maximum of 2m elements in each row of B®, there are n rows, and
sparse matrix methods avoid unnecessary multiplications of the zero elements). As a re-
sult, computation of tr(B?) requires O(mnp(p + 1))) operations, since the cyclical re-
dundancy of the trace requires only p(p + 1)/2 basis matrix traces. Note also that given
T, computation of tr(B?) for another set of weights requires only O(p?) operations.

While we mainly dwell upon the utility of (3) for more complicated combinations
of spatial weight matrices, one could employ the bounds to estimate conventional sin-
gle weight matrix models. An anonymous reviewer estimated the Cressie (1993, pp.
386-89) SIDS data using the exact log-determinant, two versions of the approxima-
tion proposed by Griffith and Sone (1995), and an approximation based upon the av-
erage of the lower and upper log-determinant bounds from (3). The reviewer
obtained estimates of 0.4958, 0.5041, 0.4982, and 0.4792 using these approaches. In-
sofar as the crude approximation based upon the average of the lower and upper log-
determinant bounds from (3) comes reasonably close to the exact estimate, this
suggests a potential exists for other simple approximations such as the ones proposed
by Griffith and Sone (1995), Martin (1993), as well as Barry and Pace (1999). What-
ever approximation used, (3) can provide bounds on the accuracy of the approxima-
tion. Note, the bound computations (and also using an average of the bounds as an
approximation) for a single weight matrix requires fewer operations than these other,
typically more accurate, approximations. In fact, the use of these bounds and an ap-
proximation comprised of an average of the bounds can lead to a closed-form solution
for the mixed regressive spatially autoregressive estimates at the bounds as well as the
approximation. Specifically, the bounds lead to a cubic first-order condition and
the approximation composed of the average of the bounds leads to a quartic first-
order condition and these all have closed-form solutions. The speed of these solutions
could help in spatial data mining applications. Finally, one could use some of these
simple approximations and bounds to estimate spatial autoregressions using commer-
cial statistical packages (Griffith 1988).

1.3 The Spatial Autoregressive Profile Log-likelihood

The spatial autoregressive model in equation (4) provides a very useful way of
combining independent variables and spatial information to predict the dependent
variable.

y=XB+oaBy+e
(y —o0a,BVy — 0ayB? — ...~ 0o BVy) = XB+ e (4)

where y represents the nx1 vector of observations on the dependent variable, X rep-
resents n observations on k variables, and o represents a scalar autoregressive para-
meter. Let M = I — X(X’X)"'X’, an idempotent matrix. One can write the residuals
e(w) as the product of an n by (p + 1) matrix R containing the residuals from regressing
y and By, for g = 1,...,p onto the columns of X and ap + 1 by 1 vector, ® = [1 —
oa’]’, comprised of a 1 followed by complement of the scalar o times the p element
column vector a.
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R=[My MBVy MB?y .. MBVy

e(m)=R{ 1 }=R(u)
—ola

One can form the sum-of-squared errors easily as in (5),
e(®)e(®) =0’ (RR)o =0'Qw, (5)
where Qisa (p + 1) by (p + 1) matrix. The profile log-likelihood becomes

L(®)=c+In|I —oB|—(n/2)In(0'Qw) (6)

where ¢ in (6) represents a constant (Anselin 1988, p. 182). Let A denote the matrix
T augmented with a leading row and column of zeros as shown in ( 7). Note that
o'A® = 0%a’Ta, so the term @’A® combines the overall level of spatial dependence
embodied in o as well as the pattern of spatial dependence found in a.

{0 0
A—(O T). (7)

For normal iid errors, we can write the upper- and lower-bounded profile log-
likelihoods, that we designate L"(®) and LY (®) as in (8):

L'(w)=c —(1/2)0’An — (n/2)In(0’'Qw);
L'(®)=c —(a+In(l —))o 20’Ao — (n / 2)In(@'Qo) . (8)

Note, the term w’A® contains the sum of squared weights as part of the overall
penalty and thus reduces the variance in the estimated weights. As noted earlier, this
resembles the penalty approach used with smoothing splines. The lower-bound like-
lihood can be interpreted as a penalized likelihood since it has a larger penalty than
the actual log-determinant. This will result in less variance among the estimated
weights than the weights associated with the actual log-determinant. If the log-deter-
minant term did not exist in the likelihood, one might have invented it anyway to
smooth the estimated weights.

A number of ways exist to model the independent variables. We examine both a
nonspatial specification for X commonly known as the spatial autoregressive model in
(9) and a fully mixed model shown in (10).

X =[U 1] 9)

X

mixed

=[U BV .. BPU (10)

Note that estimation of the doubly spatial model based on X,,;,,; nests a spatial error
autoregression since X, ;¢ spans (I—oB)[U 1].
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1.4 Likelihood Dominance and Inference for the Doubly Spatial Model

The double-bounded log-likelihoods enable inference in many cases without com-
puting the actual log-likelihood. Suppose | restrictions are imposed upon the model.
The conventional likelihood ratio test would compute the deviance (twice the differ-
ence in the log-likelihoods) and this would asymptotically follow a y*(J) distribution
(Fan, Hung, and Wong 2000). Let Ly(m) represent the restricted log-likelihood and
Ly(®) the unreqtrlcted lo g likelihood; then 2(Ly(®) — Lz(®)) ~ %*(J). By construc-
tion, Li(m) = ) and Li(0) = Ly(®) = Li(®) where the superscripts u
and [ denote upper and lower bounds. Hence, if 2(L{(®) — Li(o)) exceeds the se-
lected critical value of the chi-squared distribution with | degrees of freedom, this
implies that the deviance based on the actual log-likelihoods, 2(Ly(®) — Li(®)),
would also exceed this selected critical value.

From this we see that in some cases one would accept the same inference based on
the bounded log-likelihoods as with the actual log-likelihoods. This resembles the
likelihood dominance criteria discussed by Pollack and Wales (1991). Note also that
this condition is likely to be met in a spatial model that contains a large number of ob-
servations with explanatory variables that are highly significant.

2. EMPIRICAL PERFORMANCE OF THE DOUBLY SPATIAL MODEL

The utility of the techniques presented in section 1 depend on the quality of esti-
mates and inferences in an applied setting involving spatial data sets. Section 2.1 ap-
plies the techniques to a data set containing 506 observations on pollution and
housing values from Harrison and Rubinfeld (1978). Use of this small spatial data set
allows us to contrast the solutions obtained using our bounded method with exact re-
sults based on maximizing the log-likelihood. Section 2.2 applies the techniques to a
data set containing 57,647 observations reflecting a problem that is over 1,000 times
larger than considered in section 2.1. This illustrates the feasibility of our approach
for large data sets.

2.1 Pollution Data

Harrison and Rubinfeld (1978) investigated the use of housing data to estimate the
demand for clean air. They illustrated some of their ideas by employing data from the
Boston SMSA. These data represent a collection of 506 observations (one observation
per census tract) on levels of nitrogen oxides (NOX), average number of rooms (RM),
proportion of structures built before 1940 (AGE), black population proportion (B),
lower-status population proportion (LSTAT), crime rate (CRIM), proportion of area
zoned with large lots (ZN), proportion of nonretail business area (INDUS), property
tax rate (TAX), pupil-teacher ratio (PTRATIO), location contiguous to the Charles
River (CHAS), weighted distances to the employment centers (DIS), and an index of
accessibility (RAD).

A number of researchers have used these data to illustrate various statistical points.
For example, Krasker, Kuh, and Welch (1983), Subramanian and Carson (1988),
Breiman and Friedman (1985), Lange and Ryan (1989), and Breiman et al. (1993)
have used the data to examine robust estimation, normality of residuals, and non-
parametric and semiparametric estimation. Gilley and Pace (1996) augmented these
data with the corresponding spatial coordinates and corrected some mistakes in the
data, and we use this version of the data for our analysis.

We selected these data since (1) they have substantial spatial dependencies; (2) the
data are well known; and (3) the number of observations is small enough to permit
estimation of the weights given to each spatial basis matrix using the exact log-determi-
nant. Table 1 contains the estimates from OLS, from the lower- bounded log-likeli-
hood, the exact log-likelihood, and the upper-bounded log-likelihood. The maximum
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likelihood estimates used the autoregressive model for the dependent variable. As one
would hope, the results from the exact approach fall between the bounded estimates.
Figure 2 displays the weights given to the different numbers of neighbors at the bounds
and for the exact log-likelihood. Qualitatively, all estimation approaches produced the
same shape. Note, estimation results at the bounds would enable a researcher to reject
independence in favor of spatial dependence, since the lower bound of the unrestricted

TABLE 1
Bounded and Exact Estimation Results for the Harrison and Rubinfeld Data Using an Autoregressive
Model

Lower-Bound Exact Maximum Likelihood Upper-Bound
Variables OLS Maximum Likelihood Lower-Bound Weights Maximum Likelihood
CRIM —0.0118 —0.0072 —0.0069 —0.0067
ZN 0.0001 0.0004 0.0004 0.0004
INDUS 0.0002 0.0009 0.0010 0.0011
CHAS 0.0921 0.0146 0.0114 0.0077
NOX? —0.6372 —0.2524 —0.2346 —0.2161
RM? 0.0063 0.0072 0.0072 0.0073
AGE 0.0001 —0.0004 —0.0005 —0.0005
LDIS —0.1978 —0.1643 —0.1616 —0.1599
LRAD 0.0896 0.0592 0.0574 0.0560
TAX —0.0004 —0.0003 —0.0003 —0.0003
PTRATIO —0.0296 —0.0092 —0.0083 —0.0073
B 0.0004 0.0003 0.0003 0.0003
LSTAT —37.4895 —23.3274 —22.4674 —21.7632
o 0 0.5150 0.5400 0.5650
Log—likelihood —1700.35 —584.4019 —580.1425 —576.7777

0.3 T
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log-likelihood equals —584.4, which is significantly different from the exact restricted
log-likelihood equal to —700.4 under independence.’

2.2 U.S. Census Tract Data

To provide a more challenging example where the computational benefits associ-
ated with the doubly spatial model become clear, we collected 57,647 observations
using all census tracts in the continental United States from the 1990 Census. Obser-
vations on the median price of housing (Price), median per capita income (Income),
median year built, population (Pop), the tract’s land area (Area), as well as the latitude
and longitude of the centroid for each tract were obtained from the census informa-
tion. The variable Age equals 1990 minus the median year built and this was strictly
positive.

Table 2 contains estimation results from the autoregressive model based on 5 inde-
pendent variables and Table 3 presents results based on the mixed model that in-
cludes 93 independent variables (5 independent variables, plus 22 basis matrices
multiplied by the 4 nonconstant independent variables). Comparing the nonspatial

TABLE 2

Restricted and Unrestricted Bounded Log-Likelihoods for the U.S. Tract Data Mixed Model (Spatially
lagged independent variable estimates not shown)

Restricted Lower Restricted Upper Restricted

Variables OLS Log-Likelihood Bound Log-Likelihood Bound Log-Likelihood
Land Area —0.0025 —264,834 —0.0003 —227,572 0.0003 —224,099
Pop 0.0253 —261,261 0.0200 —227,373 0.0189 —224,098
Income 0.6628 —282,537 0.6471 —244,844 0.6400 —239,264
Age —0.1338 —260,785 —0.1337 —228,754 —0.1326 —225,448
o 0.8850 —260,176 0.9850 —260,176
k 93 93 93
pt+l 0 23 23
Unrestricted

Log-Likelihood —260,176 —227,218 —223,995
TABLE 3

Restricted and Unrestricted Bounded Log-Likelihoods for the U.S. Tract Data Autoregressive Model

Restricted Lower Restricted Upper Restricted

Variables OLS Log-Likelihood Bound Log-Likelihood Bound Log-Likelihood
Land Area —0.0850 —271,195 —0.0177 —232,756 —0.0082 —230,914
Pop 0.1146 —267,184 0.0195 —232,526 0.0142 —230,803
Income 1.0837 —288,183 0.4840 —246,472 0.4358 —240,730
Age —0.1269 —267,093 —0.0763 —233,199 —0.0700 —231,408
o 0 0.7750 —266,505 0.8150 —266,505
k 5 5 5
p+l1 0 23 23
Unrestricted

Log-Likelihood —266,505 —232,456 —230,764

1 It took 13,630 seconds to determine the optimal weights using the exact log-determinant across a
grid of 100 values of o while it took 5.2 seconds to determine the optimal bounded weights over the same
ﬁrid using a 600 Mhz Pentium III running NT 4.0. This 5.2 seconds included 2.8 seconds to form the dou-

ly stochastic matrices, 1.8 seconds to compute the traces, and 0.56 seconds to find optimal weights. Opti-
mal weights were determined using Fortran 90 code while all other operations were carried out with
Matlab 6.0 code. This small problem illustrates that choosing optimal weights based on the exact log-like-
lihood is computationally tedious. The ratio between the time required for an exact solution and that
needed to compute bounds would increase with the number of observations.



R. Kelley Pace and James P. LeSage / 87

least-squares estimates based on 5 nonspatial independent variables to a least-
squares model with 93 spatial and nonspatial independent variables resulted in an in-
crease in the log-likelihood from —266,505 to —260,176. In contrast, the use of the
22 spatial basis matrices plus the parameter o in addition to the 5 independent vari-
ables resulted in an increase in the log-likelihood from —266,505 to a point within the
interval [—232,456, —230,764]. Adding the extra 88 spatial independent variables
shifted this interval to [ 227,218, —223,995]. Because these intervals are not close to
overlapping, one can reject the autoregressive model in favor of the mixed model
using a likelihood dominance argument.

The number of added variables (that is, 88) in going from the autoregressive to the
mixed model may seem excessive. However, each parameter has over 600 observa-
tions (that is, 57647/93 > 93 ). Nevertheless, one could add additional penalties to
the likelihood function to enforce more parsimony. For example, one could simply in-
crease the weight given to the log-determinant bounds to yield a more parsimonious
solution (penalized likelihood approach). A second approach would be to add other
model selection penalties of the type embodied in the Akaike information criterion
(AIC) or Schwarz criterion (see Judge et al. 1985, p. 244) that would also lead to more
parsimonious models.

Figures 3 and 4 show the estimated weight curves for the mixed and autoregressive
models. Both curves show relatively smooth declines that appear almost linear near the
origin and display a geometric decline away from the origin. Figure 5 displays the
bounded profile log-likelihoods for the mixed model, that also exhibit a smooth shape.

In determining the optimal weights, we used one hundred values of o ranging
from 0 to 1 in 0.01 increments to implement our estimation method, and computed
the optimal weights at each one of these values of o. In addition, a random starting
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set of weights was used for each value of .. Note, problems with multiple optima would
appear in this curve as dips or downward jumps in the curve, which would alert the
practitioner to potential problems. Also, if for some reason the optimization procedure
failed at a particular value of o, this would cause the “optimal” log-likelihood to lie
below its true value at this value of o.. The overall procedure would then pick a level of
o on either side of the value where optimization failed, unless the optimization failed
for a compact range of values that actually contained the optimal value of o.. Near the
optimum the derivative of the objective function is near zero, so the value of the objec-
tive function at the neighbors would be similar. This means that choosing the neighbor-
ing value rather than the optimal value of o would not result in a substantial loss for a
relatively fine grid of o values. As a result, we have a robust approach to optimization
that simultaneously provides an informative profile likelihood curve.

3. CONCLUSION

Large spatial data sets have become increasingly common and the computational
challenges posed by these data make straightforward likelihood-based estimation dif-
ficult. Classical and Bayesian schools of inference rely on the likelihood, so abandon-
ing the likelihood paradigm in favor of problem specific solutions should not be
undertaken lightly. By deriving simple upper and lower bounds to the actual likeli-
hood, one can simplify computations greatly while retaining many of the benefits of
likelihood estimation. In addition, the bounds have an intuitively appealing interpre-
tation as penalty terms analogous to past work in the area of semiparametric smooth-
ing splines.

To illustrate our method, we estimated a very flexible functional form of spatial de-
pendence constructed using a convex combination of spatial basis matrices. Because
the overall errors on a convex combination of parts of the dependent variable are just
the convex combination of the errors on each part, the overall sum-of-squared errors
is a quadratic form involving a small matrix. Further, the size of this matrix does not
rise with the number of observations. Similarly, the penalty term is a quadratic form
based upon a small matrix of traces containing pairwise basis matrix products. Again,
the size of this small matrix does not rise with the number of observations, preserving
the tractability of our approach as the sample size increases.

We initially illustrated the method using 506 observations on the Boston housing
market. In this setting, weights obtained via the doubly spatial model using bounds
enclosed weights based on the true log-likelihood. Using a likelihood dominance ar-
gument, estimated bounds allowed us to reject spatial independence in favor of the
spatial autoregressive model, without knowledge of the actual likelihood.

As a more computationally challenging illustration, we estimated the spatial de-
pendence among neighbors using a sample of 57,647 U.S. Census tracts that con-
tained complete information on housing characteristics. It took under 8.5 minutes to
estimate the semiparametric model that embodied both nonparametric dependence
as well as parametric regression. In our application, the estimated dependence
showed an almost linear decline for nearby neighbors and a more geometric decline
for higher-order neighbors. In support of our approach, the estimated dependence at
both lower and upper bounds demonstrated this same pattern of decay in spatial in-
fluence. Using a likelihood dominance argument, estimated bounds allowed us to re-

2. In terms of computation, the time required to locate neighbors needed to form the spatial basis ma-
trices was 122.2 seconcrl)s. It took 380.9 seconds to form twenty-two doubly stochastic spatial basis matrices,
123.7 seconds to compute the trace matrix, and 0.41 seconds to compute estimates. In total, less than 8.5
minutes were required for the entire procedure. Additional performance improvements are possible since
formulation of the twenty-two doubly stochastic spatial basis matrices and trace matrix lend themselves to
parallel processing.
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ject a spatial autoregressive model in favor of a mixed model, without knowledge of
the actual likelihood. A fortiori, we are also able to reject independent errors as well.

In conclusion, modest modifications to numerical aspects of likelihood estimation
can transform the computationally difficult problem of estimating the pattern and
level of spatial dependence into a relatively simple problem, for which estimators
exist. Such estimators can provide a means of visualizing spatial dependence through
less tinted glasses than current methods. In addition to its exploratory role, the dou-
bly spatial model may also be used to reject some hypotheses of interest via likelihood
dominance arguments.
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